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ABSTRACT  We estimate U.S. corn and soy-
bean supply responses by exploiting the large 
exogenous price variations associated with 
implementation of the Renewable Fuel Stan-
dard. We focus on recent years and on the 12 
U.S. midwestern states and estimate a system 
of dynamic equations that is consistent with 
the role of crop rotation. Corn and soybean 
acreages respond more in the short run than in 
the long run. Cross-price elasticities of acre-
age responses are negative and fairly large 
in absolute value such that, when corn and 
soybean prices move together, the response of 
total acreage allocated to these two crops is 
extremely inelastic. (JEL Q11)

1. Introduction

The Renewable Fuel Standard (RFS), initially 
established by the 2005 Energy Policy Act and 
considerably extended by the 2007 Energy 
Independence Security Act, has introduced a 
sizable new source of demand for corn and 
soybeans to produce ethanol and biodiesel. 
Ceteris paribus, such an exogenous demand 
shock would be expected to increase the price 
of corn and soybeans (Fabiosa et al. 2010; Cui 
et al. 2011). Indeed, the RFS is credited with 
being one of the main causes of the commod-
ity price increases in the last decade (Mallory, 
Hayes, and Babcock 2011; Hochman et al. 
2012; Roberts and Schlenker 2013; Wright 
2014). These price effects are traceable to a 
largely exogenous demand shock—the bio-
fuel boom driven by RFS mandates—and 
thus provide an ideal opportunity to revisit the 
econometric analysis of supply response, an 

object of considerable interest in agricultural 
economics. 

The resurgence of interest in the U.S. ag-
ricultural supply response is also motivated 
by the policy implications of the RFS. The 
massive expansion of biofuel production in 
the United States has put considerable up-
ward pressure on commodity prices. A major 
concern is that, if the U.S. supply response 
cannot accommodate such an expanded de-
mand, then land elsewhere in the world may 
be converted to the production of these com-
modities. This possible indirect land use ef-
fect is crucial to evaluate the consequence of 
the RFS on greenhouse gas emissions (e.g., 
Searchinger et al. 2008; Barr et al. 2011; Berry 
2011; Berry and Schlenker 2011; Roberts and 
Schlenker 2013; Gohin 2014; Babcock 2015; 
Haile, Kalkuhl, and von Braun 2016). Hence, 
major economic policy conclusions hinge on 
the extent to which the U.S. supply response 
is (in)elastic. As discussed in more detail be-
low, existing studies are less than conclusive 
on this matter. 

The study of agricultural supply response 
has traditionally decomposed it in terms of 
separate acreage and yield responses. Stud-
ies of acreage responsiveness have relied 
on a variety of model specifications. Given 
suitable aggregation conditions, profit max-
imization has been relied on to derive theo-
ry-consistent parameterizations (Chambers 
and Just 1989; Moore and Negri 1992; Moore, 
Gollehon, and Carey 1994; Arnade and Kelch 
2007; Fezzi and Bateman 2011; Lacroix and 
Thomas 2011; Laukkanen and Nauges 2014). 
In these studies, estimation equations are de-
rived from flexible functional forms such as 
translog or normalized quadratic, and stan-
dard restrictions from optimization (homo-
geneity in prices, symmetry, and adding up) 
are maintained. Another approach that rep-
resents supply response in terms of acreage 
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shares is the linear logit specification based 
on Theil’s (1969) multinomial extension of 
the linear logit model (e.g., Bewley, Young, 
and Colman 1987; Wu and Segerson 1995; 
Miller and Plantinga 1999; Carpentier and 
Letort 2014). Alternatively, acreage respon-
siveness has been approached with more ad 
hoc models, including plain linear specifica-
tions (e.g., Morzuch, Weaver, and Helmberger 
1980; Lee and Helmberger 1985; Shideed 
and White 1989; Goodwin and Mishra 2006; 
Arnberg and Hansen 2012; Hausman 2012; 
de Menezes and Piketty 2012; Miao, Khanna, 
and Huang 2016). Some of these studies also 
differentiate between short- and long-run be-
havior, an element of interest in this setting at 
least since Nerlove (1956) (e.g., Arnberg and 
Hansen 2012; Hausman 2012; de Menezes 
and Piketty 2012). The dynamics of supply 
can be complex once one explicitly accounts 
for crop rotational effects (Eckstein 1984, 
1985), with results that depart form the canon-
ical findings of traditional Nerlovian models 
(Hendricks, Smith, and Sumner 2014).

In this paper, we study the acreage and yield 
response for U.S. corn and soybeans. The pre-
sumption is that farmers maximize expected 
profit, and that their aggregate decisions at 
the county level (our unit of observation) can 
be thought of as that of a representative ex-
pected profit maximizer. That is, similar to 
most of the aforementioned studies, there is 
an implicit assumption that the aggregation 
conditions that justify this simplification hold, 
at least approximately.1 We explicitly model 
three land uses: corn, soybeans, and every-
thing else. We assume that the acreage shares, 
which are a function of the per acre revenue 
vector, can be parameterized by a linear func-
tion, an assumption that makes the specifica-
tion of dynamic adjustment tractable and per-
mits the use of standard instrumental variable 
estimation procedures. Our parameterization 
maintains the symmetry restrictions of profit 

1 Note that our research question is not related to the 
distinct “disaggregation” problem, considered by some 
land allocation studies (e.g., Miller and Plantinga 1999; 
Chakir 2009), that arises when, for example, county land 
use estimates are used to impute subcounty parameters. The 
task of inferring individual behavior from aggregate data has 
been termed the “ecological inference” problem by King 
(1997). 

maximizations (at the mean), in addition to 
the homogeneity property and the adding-up 
condition. Additionally, we maintain symme-
try for the dynamic adjustment coefficients. 

Our analysis focuses on the rainfed produc-
ing regions of the Midwest. We use panel data 
at the county level, specifically counties in the 
12 states that comprise the Midwest region of 
the U.S. Census Bureau: Illinois (IL), Indiana 
(IN), Iowa (IA), Kansas (KS), Michigan (MI), 
Minnesota (MN), Missouri (MO), Nebraska 
(NE), North Dakota (ND), Ohio (OH), South 
Dakota (SD), and Wisconsin (WI). This region 
accounts for the vast majority of U.S. produc-
tion: over the 11 years of 2005–2015 that we 
use for the analysis of acreage response, the 
Midwest accounted for 87% of U.S. corn and 
84% of U.S. soybean production.2 The period 
2005–2015 fully exploits the price changes 
that we presumed are influenced by the ex-
ogenous biofuel expansion. Furthermore, fo-
cusing on recent data reduces the impact of 
unmodeled factors that may not hold constant 
over a longer period. In particular, a thorny is-
sue in modeling agricultural supply response 
to price concerns the role that (changing) ag-
ricultural price and income support policies 
may have played (Lee and Helmberger 1985; 
McIntosh and Shideed 1989). Such factors are 
approximately constant for the period of our 
analysis.3 

The dynamic specification of acreage al-
location that we adopt permits us to accom-
modate the implications of crop rotation. 
Most dynamic representations of agricultural 
supply have been rooted in Nerlove’s (1956, 
1958) seminal models. Whether rationalized 
in terms of adaptive expectations or partial ad-
justment, such models imply that the long-run 
supply response to a sustained price shock is 
larger in the long run than in the short run. 

2 Because the counties that enter our sample mostly 
produce both corn and soybeans, we do not need to address 
the corner solution issue, which is one of the main concerns 
in some studies (Moore and Negri 1992; Fezzi and Bateman 
2011; Lacroix and Thomas 2011).

3 In particular, price-support payments have been nearly 
zero since 2005 for soybeans and since 2006 for corn, 
and direct payments have been quite stable since 2005 for 
both corn and soybeans (see, e.g., charts provided by the 
Environmental Working Group at https://farm.ewg.org/
index.php). 
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Eckstein (1984) questioned this premise as 
being inconsistent with crop rotation. The 
practice of alternating growing corn and soy-
beans on a given plot, widespread in the U.S. 
Midwest, has been shown to increase profit by 
increasing yields, reducing fertilizer needs, 
and improving weed control (e.g., Bullock 
1992). When these considerations outweigh 
those associated with possible adjustment 
costs, the short-run response to price can ex-
ceed the long-run response. Hendricks, Smith, 
and Sumner (2014) find empirical support for 
the underlying role of crop rotation by esti-
mating a Markov transition probability model 
for field-level crop data from satellite imag-
ery—the Cropland Data Layer (CDL) made 
available by the U.S. Department of Agricul-
ture (USDA)4 —for three central midwestern 
states. 

Uncovering the effects of crop rotation 
is best pursued with data at the plot level, 
as done by Hendricks, Smith, and Sumner 
(2014). Still, there remains scope for study-
ing supply response with aggregate data be-
cause the underlying research question (as 
in our case) often pertains to this level, and 
because such data are typically more easily 
available and/or more reliable. For example, 
the use of CDL data to track land use changes 
over time is open to pitfalls (Lark et al. 2017). 
Hence, our model relies on a traditional panel 
regression estimated with county-level data. 
In order to be consistent with the implications 
of crop rotation, however, our dynamic spec-
ification includes the vector of lagged depen-
dent variables as explanatory variables. A dy-
namic panel generalized method of moments 
(GMM) estimator is used to avoid the possible 
bias due to the presence of lagged dependent 
variables.

The results from our analysis suggest that, 
due to significant cross-crop dynamics be-
tween corn and soybeans, the U.S. supply 
responses for corn and soybeans are indeed 
larger in the short run than in the long run. 
Our baseline model estimates the own-price 
supply elasticities, at the mean point of the 
data, to be 0.50 for corn and 0.38 for soybeans 
in the short run (the long-run counterparts 

4 See https://www.nass.usda.gov/Research_and_Science/
Cropland/SARS1a.php.

are 0.39 and 0.26, respectively). Most of this 
responsiveness is due to acreage allocation 
decisions, as we find that the yield supply re-
sponse to price is essentially nil. The model 
also identifies cross-price effects between 
corn and soybeans, which are emerging as 
important parameters because of the RFS: as 
conventional ethanol mandates have reached 
their statutory maximum, increasing amounts 
of biodiesel have been mandated (which in-
creases the demand for vegetable oil and, con-
sequently, oilseeds) (Moschini, Lapan, and 
Kim 2017). Cross-price elasticities are found 
to be relatively large: the cross-price elastic-
ity between corn and soybeans at the mean is 
estimated to be –0.31, and that between soy-
beans and corn to be –0.50 in the short run (the 
long-run counterparts are –0.23 and –0.32, re-
spectively). This also implies that, when both 
corn and soybean prices increase—a likely 
implication of the full implementation of the 
RFS—the response of total acreage allocated 
to these two key crops is very small. We esti-
mate this total elasticity, at the mean point, to 
be equal to 0.04 in the short run and 0.06 in 
the long run, which suggests that the ability of 
the U.S. corn and soybean production sector 
to accommodate the demand shock due to the 
RFS is limited. 

2. The Model

Our unit of observation is a county-year. Land 
allocations are presumed to be consistent 
with the choices of a representative farmer 
who maximizes expected profit. We posit that 
cropland can be devoted to three alternative 
uses: corn, soybeans, and “all other” uses. The 
latter category includes crops other than corn 
and soybeans, as well other land uses typically 
included in cropland measures.5 Because 
these three allocation choices exhaust the 

5 In particular, as explained in the data section, this 
encompasses cultivated summer fallow, cropland used for 
pasture, and idle cropland (which includes land diverted to 
conservation uses, such as the federal Conservation Reserve 
Program) (Bigelow and Borchers 2017). Hence, both the 
decision problem discussed in this section, and the empirical 
analysis that follows, are consistent with the possibility that 
previously uncultivated land may contribute to corn and/or 
soybean acreage. 
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set of possible land allocations, total county 
cropland A is assumed to be fixed. Hence, 
the decision problem can be stated as that of 
choosing acreage shares ≡k ks A A, where Ak 
is the acreage allocated to the kth crop (k = 1 
for corn, k = 2 for soybeans, and k = 3 for all 
other uses). Therefore, the problem of the rep-
resentative agent can be stated as

=

+ + −
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where kr  denote expected per acre revenues, 
w is an index of all input prices (other than 
land), and z is a vector of quasi-fixed factors 
(or environmental conditions) that constrains 
land allocation choices. The cost function 


1 2 3( , , ; , , )C s s s A w z  is assumed to be increasing 
and convex in the individual shares sk, thereby 
capturing in a simple fashion the motives for 
acreage diversification (Carpentier and Letort 
2014).6 This cost function is also increasing in 
total cropland A, and also increasing, concave, 
and homogeneous of degree one in the input 
price w. 

Considerable simplification, without much 
loss of generality, is obtained by assum-
ing that the cost function C is homogeneous 
of degree one in total cropland A, that is, 

= × 

1 2 3 1 2 3( , , ; , , ) ( , , ;1, , ).C s s s A w A C s s s wz z  Es-
sentially, this permits the land allocation prob-
lem, all else equal, to be independent of the 
size of the county. Furthermore, because of the 
price homogeneity property of the cost func-
tion  1 2 3( , , ; , , ),C s s s A w z  the objective function 
in [1] is homogeneous of degree one in 1r , 2r
, 3r , and w, implying optimal allocations are 
homogeneous of degree zero in 1r , 2r , 3r , and 
w. This homogeneity property can be main-
tained at the outset by expressing expected per 
acre revenues in real terms (i.e., ≡ k kr r w for 

= 1,2,3k ). Given all that, and explicitly main-
taining the land constraint + + =1 2 3 1s s s , the 

6 Because in this setting A is fixed, increased land 
allocation to any one use is equivalent to an increase in its 
share sk. The maintained assumption that the cost function in 
equation [1] is increasing and convex in the vector of shares, 
therefore, implies that increased land allocation to a given 
crop (corn, say) entails increasing marginal cost. 

land allocation problem in [1] can be restated 
as

− + − + −
1 2
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where the relevant cost function in equation [2] 
satisfies ≡ − −

1 2 1 2 1 2( , ; ) ( , ,1 ;1,1, ).C s s C s s s sz z  
Solving the optimality conditions for this (un-
constrained) problem, optimal acreage alloca-
tions can be written as

= − −*
1 3 2 3(( ),( ), )k ks f r r r r z   for  = 1,2,k  [3]

and, of course, = − +* * *
3 1 21s s s . 

Acreage Response Equations

For the purpose of specifying the econometric 
model, observed acreage shares in county i at 
time t can be written as ε= +* .kit kitkits s  The 
land allocation model sketched out in [2] is 
inherently static. To capture the dynamic ef-
fects on acreage allocation implied by crop 
rotation in a simple way, we permit the vector 
of conditioning variables zit to include own- 
and cross-lagged shares, −1 1its  and −2 1its . The 
set of conditioning variables also includes 
environmental variables such as spring water 
stress (Palmer Z indices in March, April, and 
May), denoted  itz , which may directly affect 
planting decisions. Hence, we are implicitly 
defining − −≡  1 1 2 1),( ,it it it its sz z . By postulat-
ing a linear functional form for the optimal 
share functions in [3], and by imposing sym-
metry in the response to per acre expected 
revenues,7 and symmetry in the response to 
lagged shares, the acreage allocation equa-
tions for corn and soybeans are expressed as
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7 The price symmetry property of supply equations is 
inherited by acreage equations if yields are independent of 
prices, a property supported by the empirical results reported 
below and that we maintain in estimation.
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Our formulation of the land allocation 
problem intuitively presumes that the driving 
factors are expected per acre revenues asso-
ciated with alternative uses. These per acre 
returns reflect the impact of both prices and 
yields, and their covariance. To make equa-
tions [4] and [5] actually estimable, we fur-
ther assume that the (normalized) expected 
per acre revenue can be expressed as follows: 

= +kit kit kit kir p y v   for  = 1,2,3,k  [6]

where pkit is the expected output price, ykit is 
the expected yield, and vki is the covariance of 
realized price and yield, all for crop k in county 
i. (Recall that, for two random variables v1 
and v2, Ε = Ε Ε +1 2 1 2 1 2[ ] [ ] [ ] cov( , ).v v v v v v ) Note 
that the covariance term in [6] is assumed to 
be county specific but time invariant. Further-
more, the expected local (county-specific) 
price is not observed. Following standard 
practice, this expected local price can be de-
composed as δ≡ +kit kt kip p , where ktp  is a 
national reference expected price (which, as 
explained later, we measure by the futures 
price) and δki is the expected local “basis.” 

As defined in this context, the basis cap-
tures both temporal and spatial factors af-
fecting (1) the differences between cash and 
futures prices at the delivery point for the 
futures contract, and (2) the difference be-
tween contemporaneous cash prices between 
location k and the futures delivery point. A 
number of factors affect these temporal and 
spatial price relationships, including returns 
to storage and transportation costs (Jiang and 
Hayenga 1997). Whereas component (1) is 
common to all counties in a given year, the 
spatial component in (2) differs across coun-
ties. Reliable information about cash prices 
is available at only a very few locations, and 
hence a structural representation of the basis 
relationship for each county is not feasible. 
For tractability, therefore, we assume that the 
local basis δki is time invariant, although this 
basis is permitted to be crop specific (i.e., to 
differ between corn and soybeans). Denot-
ing the product of the national expected ref-
erence price and the local expected yield as 

≡kit kt kitr p y , the expected per acre revenues in 
equation [6] are as follows: 

δ= + +kit kit ki kit kir r y v   for  = 1,2,3.k  [7]

A stylized fact of agricultural productiv-
ity is that expected crop yields have steadily 
trended upward since the mid-1930s, a reflec-
tion of technical progress ultimately due to 
public and private investments in research and 
development activities (Alston et al. 2010). 
Our analytical framework thus permits us to 
capture the effect of trending yields on crop 
allocation decisions. As discussed in more 
detail later, expected yields have a common 
linear trend and county-specific intercepts, 
and the estimated expected yields will be 
fully reflected in the kitr  regressors. But, given 
the structure of equation [7], trending yields 
should also interact with the basis term δki
, implying the presence of county-specific 
trend effects. The fact that the terms δki are 
unobserved makes it difficult to identify these 
local effects. Still, to capture at least the mean 
of these implied trends, we include a common 
time trend in each estimating share equation. 
In conclusion, therefore, we end up with the 
following two estimating equations: 

α β π β π γ γ

τ ε
− −= + + + +

+ +

1 1 11 1 12 2 11 1 1 12 2 1

'
1 1 1 ,

it i it it it it

it t it

s s s

Tzζ  [8]

α β π β π γ γ

τ ε
− −= + + + +

+ +

2 2 12 1 22 2 12 1 1 22 2 1

'
2 2 2 .

it i it it it it

it t it

s s s

Tzζ  [9]

where π ≡ − 3( )kit kit itr r , for = 1,2k , represents 
relative expected per acre revenues, and tT  is 
a linear trend variable. The county-specific 
fixed components of the basis, and the cova-
riance between price and yields, are absorbed 
by the county-specific intercepts αki. 

The system of equations [8] and [9] can be 
expressed in a vector notation as follows:

− ′= + + + +1 ,it i it it it its B s xα π Γ ψ ε  [10]

where sit is the 2 × 1 vector of shares; αi is 
the 2 × 1 vector of constants; πit is the 2 × 1 
vector of relative per acre revenues; xit is the 
4 × 1 vector of Palmer Z indices in March, 
April, and May, and time trend; and β= [ ]kjB  
and γ= [ ]kjΓ  are (symmetric) 2 × 2 matrices 
of coefficients. We note at this juncture that, 
whereas the parameters in B characterize the 
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short-run supply responses to expected reve-
nues (prices), long-run supply responses are
defined by −≡ −LR 1( )B I BΓ . For the system 
of supply response equations to be dynami-
cally stable it is necessary that the eigenvalues 
of the matrix of lagged-dependent coefficients 
Γ be less than one in absolute value.

Yield Response Equations

For the purpose of computing expected per 
acre revenues, in addition to expected prices, 
we need expected yields. We postulate simple 
linear equations for yield response, following 
the literature reviewed earlier. Specifically, 
the expected yield for crop k, county i, at time 
t is modeled as

α β γ= + + +' ,y y y
kit kit k it tki k ky p Tξ ω  [11]

where the vector ωit includes weather variables 
(heat and water stress) that are all county and 
time specific, and tT  is the trend variable de-
fined earlier, which captures exogenous tech-
nological progress. The presence of the own 
expected output price (deflated by general 
input price) in equation [11] also permits us 
to investigate whether, and to what extent, ex-
pected output prices influence expected yields.

Endogeneity Issues 

A standard concern in the econometric esti-
mation of supply equations involves identi-
fication and the potential problem of endog-
enous prices. Given the presumption that 
the large price increases experienced in the 
period under consideration were triggered 
by exogenous demand shifts, including the 
major role played by the implementation of 
the RFS, we believe that the potential endog-
eneity problem is not a major concern in our 
analysis. The remaining subtle issue concerns 
the futures prices. Since Gardner (1976) sug-
gested using the futures price as a measure of 
the expected price, the endogeneity issue has 
been raised (e.g., Choi and Helmberger 1993). 
The (subtle) rationale of such endogeneity 
is predicated on the possibility that farmers 
may be partially aware of forthcoming sup-
ply shocks at decision time, thereby changing 
their planting area accordingly, which in turn 

may affect futures prices. When the predict-
able supply shocks are (usually negatively) 
correlated with decision-time futures prices, 
omitting such predictable components from 
the estimating equation induces correlations 
between the price variable and the error term 
and thereby causes endogeneity bias. 

There have been efforts to deal with the 
foregoing endogeneity problem. The crux of 
the matter concerns how predictable weather 
shocks affect planting decisions and thereby 
affect expected price. In the context of an 
aggregate global caloric supply, it is shown 
that such endogeneity can be treated by in-
strumenting price with past weather shocks 
(Roberts and Schlenker 2013), or simply by 
including current realized shocks as a proxy 
for predictable shocks (Hendricks, Janzen, 
and Smith 2015). In this paper, however, our 
focus is local (U.S. county-level) supply be-
havior. Hence, similar to Hendricks, Smith, 
and Sumner (2014), we assume that the na-
tional expected prices (i.e., futures prices) are 
exogenous.

Estimation

When estimating the equation system of [10], 
applying simple ordinary least-squares (OLS) 
estimators, which ignores the individual fixed 
effects, is known to be problematic because 
unobserved county-specific heterogeneity 
tends to be correlated with lagged dependent 
variables. For example, a severe negative 
county-specific random shock resulting in a 
low corn acreage share—given the short time 
frame of our panel data—may be confounded 
with the estimated county-specific intercept. 
Hence, including last year’s low corn shares 
in the current period corn equation may cause 
positive correlation between the lagged de-
pendent variable and the county-specific het-
erogeneity in the error term. As a result, the 
coefficient of the own-lagged dependent vari-
able is overestimated (upward bias). Thus, we 
need to control the unobserved county-spe-
cific heterogeneity to deal with the endogene-
ity from the omitted variable bias.

To control for the time-invariant, coun-
ty-specific unobserved heterogeneity, an im-
mediate option is to use the within-groups es-
timator (i.e., individual fixed effects estimator) 
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by demeaning variables (e.g., by introducing 
county-specific dummy variables). When us-
ing the within-groups estimator, however, the 
coefficient estimates of own-lagged depen-
dent variables tend to be biased downward be-
cause the error term contains the information 
of demeaned lagged shares (Nickell 1981). 
Another way to control the unobserved het-
erogeneity is to take first differences, which, 
from equation [10], yields following system: 

− ′∆ = ∆ + ∆ + ∆ + ∆1 .it it it it its B s xπ Γ ψ ε  [12]

Although the county-specific heterogeneity is 
eliminated without causing the bias identified 
by Nickell (1981), equation [12] is still subject 
to correlation between lagged shares and error 
terms because both have −1t  terms: −, 1ki ts  in 

−∆ , 1ki ts  and ε −− , 1mi t  in ε∆ mit for = 1,2k  and 
= 1,2m . Because the own-lagged shares are 

negatively correlated with corresponding er-
ror terms (the case of =k m), OLS estimates 
on the own-lagged share coefficients in equa-
tion [12] are biased downward. 

To account for endogeneity in the dif-
ferenced equations, we use the difference 
GMM estimator as suggested by Holtz-Eakin, 
Newey, and Rosen (1988) and Arellano and 
Bond (1991). Although the foregoing dif-
ferenced equation estimators have been de-
veloped for single-equation models, we can 
extend them to the two-equation system of 
interest here (Arnberg and Hansen 2012). To 
implement this estimator, we use two types 
of moment-weighting matrices. The first ma-
trix reflects the MA(1) feature of differenced 
errors and assumes homoskedasticity and no 
cross-equation correlation, resulting in the 
one-step GMM estimator. The other matrix 
allows heteroskedasticity and cross-equation 
correlation by utilizing residuals from the 
one-step estimator, resulting in the two-step 
GMM estimator. Whereas the two-step esti-
mator improves efficiency over the one-step 
estimator in the case of a complicated error 
structure, it is subject to downward bias in the 
computed standard errors, especially in small 
samples (Arellano and Bond 1991).8 For com-
parison purposes, we report both results. 

8 Windmeijer (2005) proposes a correction procedure for 
this bias.

The remaining issue is the choice of in-
struments. Basically, any lagged level is valid 
for constructing an instrument, as long as it 
is lagged sufficiently to handle the existing 
serial correlation in the error term. However, 
this proliferation of possible instruments is 
unattractive because too many instruments 
overfit the endogenous variables and in turn 
preserve the bias (Roodman 2009a). The pos-
sible remedies are twofold (Roodman 2009b): 
(1) collapsing the instrument matrix so that 
each lag generates only one instrument per en-
dogenous variable, and (2) excluding longer 
lags from instruments. We use both treatments 
for our instruments. To delimit valid lags, we 
check the serial correlation on the error term 
by regressing residuals on each of their lags, 
as discussed by Wooldridge (2010, 319–20) 
(see Drukker 2003 for the test performance). 
Because the equation is first-differenced, 
the residuals tend to display properties of an 
MA(1) process. Hence, we expect negative 
correlation in the first-lagged residual, and so 
to uncover correlation in the levels it is most 
meaningful to check twice-lagged residuals. 
For example, if the estimated coefficient of 
a twice-lagged residual is significant, we can 
infer that there is first-order serial correlation 
in levels, and then for share variables third and 
higher lagged levels are valid for instruments.

3. Data

For the analysis, we construct two datasets: 
an acreage dataset for 2005–2015, and a yield 
dataset for 1971–2015. Restricting the analy-
sis of acreage decisions to 2005–2015 is based 
on our desire to focus on supply response 
in the period of the RFS implementation, as 
discussed in the introduction. The purpose of 
estimating the yield response model, on the 
other hand, is to account for anticipated yield 
increases in computing expected per acre re-
turns. Because the underlying technical prog-
ress responsible for yield increases is inher-
ently a long-term phenomenon, observations 
over a sufficiently long period are desirable. 
Hence, we estimated the yield model over the 
much longer period of 1971–2015. In what 
follows, we explain how we construct each 
variable in these datasets. The actual analyzed 
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counties in the 12 midwestern states are dis-
played in Figure 1, and summary statistics are 
described in Table 1. All monetary values in 
Table 1 are expressed in their nominal values. 
For the actual estimation, by construction we 
consider relative terms normalized by the gen-
eral input price, as discussed earlier. 

Acreage Shares

County-level acreage values for corn and soy-
beans are from the National Agricultural Sta-
tistics Service (NASS) of the U.S. Department 
of Agriculture (USDA).9 The 12 midwestern 
states consist of 1,055 counties with 11,605 
data points over the examined 11 years. Fo-
cusing on counties that are nonirrigated (i.e., 
less than 10% irrigation rate, as defined by Xu 

9 See https://quickstats.nass.usda.gov/.

et al. 2013) and in the traditionally delimited 
rainfed area (i.e., east of the 100th meridian) 
yields 832 counties with 9,152 data points. 
Because NASS/USDA data have missing val-
ues, we chose to drop counties with more than 
one-third of values missing over the 11-year 
period, resulting in 686 counties with 7,546 
data points. After dropping missing data 
points, we obtain 6,961 observations, still 
over 686 counties.10 Note that during the es-
timation taking the first lag on shares causes 
loss in observations (besides first differenc-
ing). To reduce such data loss, we constructed 
first-lagged shares by filling in 2004 values. 

10 To be precise, we have 120 data points out of 7,546 that 
are missing both corn and soybean acreage values. We drop 
277 additional data points because either the corn or soybean 
acreage value is missing. Finally, 188 observations were 
dropped because of missing previous year acreage values. 

Figure 1
Geographic Scope of the Analysis: 686 Counties in 12 Midwestern States
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Hence, level equation models based on equa-
tion [10] have 6,961 observations, while dif-
ferenced equation models based on equation 
[12] have 6,149 observations.

In our context, the third category “all other 
uses” is meant to capture all acres that could 
conceivably have been planted to corn or 
soybeans but were not. Hence, we compute 
it as the difference between total “cropland” 
and the sum of acres planted to corn and soy-
beans, as discussed in the previous paragraph. 
County-level cropland acres are taken from 
the USDA Census of Agriculture,11 the main 
source of land use data in the United States. 
Total cropland includes five components: 
cropland harvested, crop failure, cultivated 
summer fallow, cropland used for pasture, and 
idle cropland (for a full definition, see Bigelow 
and Borchers 2017, appendix 1). Census data 
are available only at five-year intervals, and 
some imputation for year-specific cropland 
measures would be necessary. Consistent with 
the presumption that, within a given county, 

11 See https://www.agcensus.usda.gov/.

total available cropland is unlikely to have 
varied over the last decade, we postulated a 
constant county-level total cropland area, and 
we measure it by the maximum among cen-
sus values recorded over the most recent three 
censuses (2002, 2007, and 2012). Somewhat 
oddly, it turns out that for a few cases (113 
observations out of 6,961) the sum of corn and 
soybean acreages from the NASS/USDA is 
greater than the aforementioned total cropland 
measure from the U.S. Census of Agriculture, 
which would imply negative acreage for the 
“other crops” aggregate. To resolve this issue, 
for the aforementioned 113 observations, the 
acreage for cropland allocated to uses other 
than corn and soybeans is obtained directly 
from CDL data (see the Appendix for details).

Expected per Acre Revenues

In order to construct the reduced per acre rev-
enue variables used in equations [8] and [9] 
(i.e., ≡kit kt kitr p y ), we construct expected 
output prices ( ktp ) and expected yields ( kity )  

Table 1
Summary Statistics (686 Counties)

Mean Std. Dev. Min. Max.

Data for Acreage Equations: 2005–2015 (6,961 Observations)

Acreage share for corn 0.35 0.15 0.005 0.77
Acreage share for soybeans 0.32 0.12 0.004 0.65
Acreage share for other crop 0.33 0.22 0.0005 0.98
Expected revenue for corn ($1,000/acre)a 0.63 0.20 0.16 1.07
Expected revenue for soybeans ($1,000/acre)a 0.43 0.14 0.14 0.74
Expected revenue for other crop ($1,000/acre)a 0.42 0.15 0.10 1.05
Input price index (2010 = 1) 1.03 0.18 0.73 1.23
Palmer Z index in Mar –0.21 1.71 –4.25 7.08
Palmer Z index in Apr 0.80 2.18 –4.00 9.04
Palmer Z index in May 0.37 2.14 –4.09 8.76

Data for Yield Equations: 1971–2015 (29,494 Observations)

Yield for corn (bu/acre) 116 36 7 236
Yield for soybeans (bu/acre)   36 10 4   73
Expected price for corn ($/bu) 2.97 1.06 1.26 5.89
Expected price for soybeans ($/bu) 6.91 2.40 2.87 13.31
Input price index (2010 = 1) 0.64 0.26 0.21 1.23
GDD in growing season 2,432 324 1,168 3,418
EDD in growing season      37 50 0 494
Palmer Z index in May 0.40 2.21 –4.78 9.35
Palmer Z index in Jun 0.24 2.22 –6.51 9.05
Palmer Z index in Jul 0.47 2.37 –5.69 15.21
Palmer Z index in Aug 0.36 2.19 –5.72 11.69
Palmer Z index in Sep 0.16 2.20 -4.94 15.63

a The “expected revenues” are the reduced values ( ⋅k kp y ), without basis and own covariance terms.

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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for corn and soybeans (while constructing 
an index of expected per acre revenue for 
the other crop, as explained later). Expected 
national prices are constructed from futures 
prices. Specifically, for crop k = 1, 2 in year t
we set τ= ,f

kt ktp p , where τ,f
ktp  denotes the fu-

tures price for the first delivery month after 
harvest, quoted at decision time τ. Daily fu-
tures price data were obtained from Quandl.12 
We use futures prices with a delivery month 
of December for corn and with a delivery 
month of November for soybeans. We average 
daily closing futures prices over January to 
March (i.e., before the planting season). The 
general input price index is approximated by 
the national price index for all agricultural in-
termediate goods from the USDA Economic 
Research Service.13 Because the input price 
index is updated only up to 2013, we keep the 
2013 value for 2014 and 2015.

Expected yield values for corn and soy-
beans are based on the estimated parameters 
of equation [11]. Given that including or ex-
cluding the own-expected price provides vir-
tually identical predicted yields (as shown in 
the results section), we use the model without 
output prices. Furthermore, to obtain the ex-
pected yield that is relevant at farmers’ deci-
sion times, we use unconditional mean values 
for the weather variables over 1971–2015. As 
for the “other crops” aggregate, this is hetero-
geneous across counties, both in terms of the 
types of land uses (other than corn and soy-
beans) that might be considered by farmers, 
and the acreage extent of these other crops. 
To proceed, we proxy per acre revenue for 
“other crops” with an index of expected reve-
nues for wheat, alfalfa, and sorghum. Appen-
dix Table A1 documents that wheat, alfalfa, 
and sorghum are in fact the major crops other 
than corn and soybeans for the states consid-
ered in this study. The expected wheat price 
is constructed similarly to the procedure used 
for corn and soybeans: it uses the wheat fu-
tures price (for the December delivery month, 
quoted at the decision time). As for the ex-
pected alfalfa and sorghum prices, these are 
measured by averaging state-level received 

12 See https://www.quandl.com.
13 See https://www.ers.usda.gov/data-products/agricultural-

productivity-in-the-us/.

prices for the months of January to March 
(as done by Hendricks, Smith, and Sumner 
2014). Expected yield is the predicted value 
from county-specific regressions on a linear 
time trend using NASS/USDA wheat, alfalfa, 
and sorghum yield data.14 Now, the expected 
revenues for wheat, alfalfa, and sorghum are 
aggregated in the county-specific index by 
using 2010 acreages as weights. Due to the 
presence of considerable missing values in 
NASS/USDA acreage data, we use CDL data 
to obtain wheat and alfalfa acreage informa-
tion used in this weighting procedure.15 

Yield and Weather Variables

County-level yield values for corn and soy-
beans are obtained from NASS/USDA for 
1971–2015. We collect yield values for the 
686 counties used in the acreage estimation. 
To run the seemingly unrelated regression 
(SUR) model we drop data points for which 
at least one of either corn or soybean yield is 
missing. After dropping missing data points, 
over the 45 years of the sample we eventually 
have 29,494 observations for yield estimation. 

We consider seven weather variables. Two 
of them are heat variables: growing degree 
days (GDD) and excess heat degree days 
(EDD) in the growing season (June to Sep-
tember); and five are water stress variables: 
monthly Palmer Z indices for May, June, 
July, August, and September. The definition 
of these weather variables, and the way they 
are assembled, follows closely the procedure 
described by Xu et al. (2013). Briefly, GDD 
accounts for additional beneficial degrees 
within 10 °C and 30 °C, while EDD captures 
additional harmful degrees over 32.2 °C. 
For 1971–2014 we used the compiled daily 
temperature data from United States Histor-
ical Climatology Network (USHCN) of the 

14 Because of missing values for price and yield in other 
crops, values for alfalfa in IL are also used for IN, and values 
for sorghum in IL, KS, and MO are used for IL, IN, IA, KS, 
MO, NE, and SD. 

15 The base year is chosen as 2010 in order to strike a 
balance between the accuracy of the CDL, which began 
using a 30 m subgrid (replacing 56 m) for the entire United 
States in 2010, and the accuracy of predicted wheat yield 
(wheat yield data is available only up to 2007 from NASS/
USDA). 

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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National Oceanic and Atmospheric Admin-
istration (NOAA), which is provided by the 
Carbon Dioxide Information Analysis Center 
(CDIAC).16 However, the CDIAC no longer 
provides annual updates as of 2014, thus we 
collected temperature data from the Param-
eter-Elevation Regressions on Independent 
Slopes Model database for 2015.17 Palmer Z 
index data were collected using the daily in-
dex data from NOAA’s National Centers for 
Environmental Information.18 The index mea-
sures the deviation from normal water stress, 
represented by 0, where –2 or less indicates 
drought and +5 or more indicates flood con-
ditions. All weather variables have no missing 
values for the 686 counties over 45 years. 

4. Results

Because the estimated yield response equa-
tions are used to compute per acre expected 
revenues that feed into the acreage response 
equations, as discussed earlier, we present 
these results first. 

16 See http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html.
17 See http://prism.oregonstate.edu/.
18 See https://www.ncdc.noaa.gov/temp-and-precip/drought/

historical-palmers/.

Yield Response

The estimation results for the yield equa-
tions, based on equation [11], are displayed 
in Table 2. We consider two specifications, 
with and without the inclusion of the own-ex-
pected output price. For both cases, the two 
yield equations are estimated with the SUR 
model, although for the case where prices are 
omitted, the estimated results are identical to 
those of OLS. The estimated coefficient of the 
linear trend variable, for the model without 
inclusion of the own price, shows that exoge-
nous technological change is responsible for a 
gain of 1.666 bu/acre/year for corn, and 0.431 
bu/acre/year for soybeans, a result consistent 
with recent estimates (e.g., Xu et al. 2013). 
The weather variables are strongly significant 
for both corn and soybean yield and across 
all specifications. Growing season GDD and 
EDD show the expected signs (positive and 
negative, respectively). The deviation of wa-
ter stress is bad for yield during the early and 
late growing season (that is, planting time 
and harvesting time) but beneficial during the 
middle of the growing season (July and Au-
gust). When including own price, as in col-
umns (3) and (4) of Table 2, the explanatory 
power of weather and trend variables remains 
essentially the same. The coefficients of the 
price variable are not statistically significant 

Table 2
Estimation Results for Corn and Soybean Yields, Seemingly Unrelated Regression Model

Without Price With Price

Variable Corn Yield (1) Soy Yield (2) Corn Yield (3) Soy Yield (4)

Corn price 0.233* (0.120)
Soy price –0.001 (0.016)
Growing degree days 0.008*** (0.001) 0.007*** ( <0.001) 0.008*** (0.001) 0.007*** (<0.001)
Excess degree days –0.299*** (0.004) –0.069*** (0.001) –0.299*** (0.004) –0.069*** (0.001)
Palmer Z index in May –1.054*** (0.048) –0.375*** (0.013) –1.053*** (0.052) –0.375*** (0.013)
Palmer Z index in Jun –0.484*** (0.051) –0.181*** (0.014) –0.503*** (0.052) –0.180*** (0.015)
Palmer Z index in Jul 1.636*** (0.051) 0.188*** (0.014) 1.653*** (0.052) 0.187*** (0.014)
Palmer Z index in Aug 0.772*** (0.050) 0.693*** (0.014) 0.770*** (0.050) 0.693*** (0.014)
Palmer Z index in Sep –0.382*** (0.050) –0.017 (0.014) –0.375*** (0.050) –0.017 (0.014)
Trend 1.666*** (0.008) 0.431*** (0.002) 1.682*** (0.012) 0.431*** (0.003)
Constant 77.771*** (3.202) 12.452*** (0.893) 75.728*** (3.371) 12.477*** (0.937)
R2 0.76 0.76 0.76 0.76
Cross correlation of 

residuals
0.56 0.56

Own price elasticity 0.010* (0.005) –0.0004 (0.005)

Note: Standard errors are in parentheses. For elasticities, standard errors are obtained by the delta method.
*, *** Significance at the 10% and 1% levels, respectively. 
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at the customary 5% level. Perhaps most im-
portant, their magnitude is economically in-
significant: the calculated elasticities of yield 
response with respect to own-expected output 
price, at the mean point of the data, are very 
small: 0.01 for corn and –0.0004 for soy-
beans. Hence, for the purpose of computing 
the expected per acre revenue variables for 
the acreage response equations, we rely on 
the estimated model of the first two columns 
of Table 2. 

Acreage Response

The estimation results under the acreage 
models are displayed in Table 3. All dynamic 
models are based on first differencing as in 
equation [12]. The results under the heading 
“Dynamic Model 1” are based on a one-step 
GMM estimator, while those under the head-
ing “Dynamic Model 2” are based on the two-
step GMM estimator. Table 3 also includes re-
sults for the static model that omits all lagged 
dependent variables, with estimation relying 
on the two-step GMM estimator. All standard 

errors of estimates are clustered by counties 
to account for the possible correlated behavior 
within each county. For comparison purposes, 
we also estimate three additional models—
level-equation OLS, within-groups (fixed 
effects) OLS, and differenced equation OLS 
estimators—which are reported in Appendix 
Table A2. 

The assumption underlying our estima-
tion strategy is that the futures price and an-
ticipated yields are exogenous, and thus we 
treat the constructed per acre return variables 
as exogenous, along with the spring Palmer 
Z indices. Except for acreage shares, there-
fore, we use regressors in differences as in-
struments without lagging. Note that the time 
trend effect is estimated by constant term in 
differenced equations, and constant terms are 
used as instruments too. We find evidence 
of third-order serial correlations in the error 
terms for both corn and soybean equations. 
Hence, we use fifth or longer lagged levels 
for endogenous variables—corn and soybean 
shares—for both equations. By collapsing the 
instrument matrix, we have one instrument 

Table 3
Estimated Coefficients under Dynamic and Static Models

Dynamic Model 1: One-Step 
Difference GMM

Dynamic Model 2: Two-Step 
Difference GMM

Static Model: Two-Step 
Difference GMM

Variable Corn (1) Soy (2) Corn (3) Soy (4) Corn (5) Soy (6)

Corn revenue 0.29***
(0.008)

–0.27***
(0.007)

0.29***
(0.008)

–0.26***
(0.007)

0.36***
(0.006)

–0.34***
(0.007)

Soy revenue –0.27***
(0.007)

0.29***
(0.009)

–0.26***
(0.007)

0.29***
(0.009)

–0.34***
(0.007)

0.37***
(0.008)

Other revenue –0.03***
(0.005)

–0.03***
(0.006)

–0.03***
(0.005)

–0.03***
(0.006)

–0.02***
(0.003)

–0.03***
(0.003)

Lagged corn share –0.10
(0.164)

0.26*
(0.151)

–0.03
(0.145)

0.32**
(0.135)

Lagged soy share 0.26*
(0.151)

–0.19
(0.141)

0.32**
(0.135)

–0.13
(0.129)

Palmer Z index in Mar –0.002***
(0.0002)

0.001***
(0.0002)

–0.002***
(0.0002)

0.001***
(0.0002)

–0.003***
(0.0002)

0.001***
(0.0002)

Palmer Z index in Apr –0.002***
(0.0001)

0.001***
(0.0001)

–0.002***
(0.0001)

0.001***
(0.0001)

–0.002***
(0.0001)

0.001***
(0.0002)

Palmer Z index in May –0.002***
(0.0004)

–0.001**
(0.0003)

–0.003***
(0.0003)

–0.001***
(0.003)

–0.003***
(0.0001)

<–0.001
(0.0001)

Trend <0.001
(0.0007)

0.003***
(0.0006)

<–0.001
(0.0006)

0.003***
(0.0005)

<0.001
(0.0002)

0.004***
(0.0002)

Cross correlation in residuals –0.17 –0.13 –0.28

p-Value of Hansen’s J 
statistic

0.40 0.54

Note: Standard errors are in parentheses and clustered by counties. GMM, generalized method of moments.
*, **, *** Significance at the 10%, 5%, and 1% levels, respectively. 

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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per lag per variable, and we choose to use 
only fifth lagged share levels as instruments, 
yielding two instruments. Given that there 
is a trade-off between bias and efficiency in 
terms of number of instruments in the dy-
namic panel model (e.g., Hendricks, Janzen, 
and Dhuyvetter 2012), we sacrifice some effi-
ciency by choosing a small number of instru-
ments. This is mainly because adding more 
share instruments (such as sixth lag of corn 
share and sixth lag of soybean share) weak-
ens the orthogonality of instruments to error 
terms, resulting in high Hansen’s J statistics. 
Admittedly, because each of our estimation 
equations includes two lagged dependent 
variables, and there are serial correlations in 
the level-equation error terms, results may be 
sensitive to the choice of instruments.19 

We find that the coefficients for all per acre 
revenue variables are significant for both corn 
and soybean equations, under all models in 
Table 3 (and under all models in Appendix Ta-
ble A2). In particular, the magnitudes of these 
coefficients are almost the same under all dy-
namic models that control the individual fixed 
effects (that is, the dynamic Models 1 and 2 
in Table 3, and the dynamic Models 4 and 5 
in Appendix Table A2). This supports the as-
sumption of exogeneity of per acre revenue 
variables to the idiosyncratic error terms. We 
also find that those estimates under the static 
model are larger in absolute terms than those 
under the dynamic models. 

Under dynamic Models 1 and 2, the coef-
ficients of own-lagged shares are not signif-
icant, while those of cross-lagged shares are 
significant. One way to check the validity of 
those estimates is to compare them with bi-
ased estimates. It turns out that the GMM es-
timates on own-lagged shares are lower than 
the level equation OLS estimates and higher 
than the differenced equation OLS estimates. 
The GMM estimates on cross-lagged shares 
are similar to those of the within-groups es-
timates. Therefore, we conclude that the dif-
ference GMM estimates are not suffering sig-

19 As many applications do, introducing year dummies 
might reduce the correlation between instruments and errors 
by controlling any common shocks for all counties in a given 
year. However, it would distort the explanatory power of 
per acre revenues that include the futures prices, which are 
common for all counties. 

nificantly from finite sample bias. Note that 
the eigenvalues of the estimated A matrix (the 
coefficients of own and cross-lagged shares) 
are (0.113, –0.406) for dynamic Model 1, and 
(0.241, –0.408) for dynamic Model 2, imply-
ing that both are dynamically stable. 

Severe rainfall in March and April (as cap-
tured by the Palmer Z indices) is significantly 
associated with less corn share but with more 
soybean share, while in May it explains less 
shares for both. The cross correlation of resid-
uals between corn and soybean equations are 
–0.13 to –0.28. For both dynamic and static 
two-step estimators, the overidentification test 
statistics (Hansen’s J statistics) indicate that 
the null hypothesis of valid instruments is not 
rejected. 

Elasticities

The properties of the acreage response func-
tions are best illustrated by supply elastic-
ities. If qk denotes output supply of crop k, 
then ≡ =k k k k kq A y s Ay . Given that expected 
yield yk is independent of prices, the supply 
elasticity with respect to any explanatory 
variable is equivalent to the elasticity of the 
corresponding acreage share. Hence, recall-
ing the construction of per acre expected 
revenue variables discussed earlier, their es-
timated coefficients (the B matrix) permits 
the direct calculation of four short-run elas-
ticities η ≡ ∂ ∂( )( )kj k j j kq p p q , =, 1,2k j . The 
remaining short-run elasticities are computed 
by exploiting the theoretical restrictions for 
adding-up, symmetry, and homogeneity, as 
follows:

η η η= − −1 2
3 1 2

3 3
,k k k

s s

s s
 for   = 1,2,3k   (adding-up); [13]

η η= 3 3
3 3 ,k k

k k

s r

r s
                         for   = 1,2k   (symmetry); [14]

η η
=

= −∑ 



3

1

,kw k      for   = 1,2,3k   (homogeneity), [15]

where ηkw means the acreage elasticity for 
crop k with respect to the input price index. 

The elasticities are reported in Table 4. 
All elasticities are evaluated at the mean of 

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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the relevant variables, and the correspond-
ing standard error is calculated with the delta 
method.20 Given the small difference in the 
magnitude between one-step and two-step es-
timates, our baseline dynamic model is based 
on the two-step GMM estimator because it 
might improve efficiency to some degree from 
the one-step estimator when the error struc-
ture is not simple. (A caveat is that the robust 
standard errors might be biased downward 
for the two-step estimator.) For the dynamic 
model, calculation of long-run elasticities is 
analogous to calculation of the short-run elas-
ticities, except that the parameter matrix B is 
replaced by (I – Γ)–1B. 

Most elasticity values turn out to be statis-
tically significant at the 1% significance level. 
Under all three cases, all signs accord with 
expectations. The sign of acreage response 
with respect to the input price turns out to be 
positive for soybean acreage and other acre-
age, which might seem counterintuitive at first 
blush. It is important, however, to recall that 
the adding-up condition applies: input price 
changes do affect acreage, but, because acre-
age allocations must add up to the given total 

20 The obvious evaluation point for these elasticities is 
the mean point of the local per acre revenues kitr . Because 
of the unobserved component of the basis and price-yield 
covariance, however, we evaluate the elasticities at the mean 
point of the variables kitr  defined earlier. 

county cropland, it is not possible for all acre-
age responses to input price to have the same 
sign. Based on the baseline dynamic model, 
the corn and soybean own- and cross-elastic-
ities, which are our main interest, show that 
both crops have a more elastic response in 
the short run than in the long run. This is be-
cause of the structure of the estimated matrix 
Γ in the dynamic models, shown in Table 3, 
which displays strong cross-acreage dynam-
ics between corn and soybeans. Note that corn 
elasticities are larger than those of soybeans in 
absolute terms. The cross-price elasticities are 
fairly large in absolute value, relative to the 
own-price elasticities, indicating that an ex-
pansion of corn acreage largely comes at the 
expense of soybean acreage (and vice versa). 
The short-run elasticities for corn and soy-
beans under the static model are larger than 
their counterparts under the dynamic model.

Given the relatively large magnitude of 
cross-price elasticities, an interesting ques-
tion concerns the responsiveness of total 
acreage allocated to the two crops, corn and 
soybeans, resulting from a generalized in-
crease in their prices (a likely outcome from 
the implementation of the RFS). To best il-
lustrate this concept, therefore, we compute a 
“total” elasticity ηT defined as follows. Con-
sider scaling the price of both corn and soy-
beans by a constant κ > 0, and represent total 
acreage share allocated to these two crops as 

Table 4 
Elasticities at Overall Means

Corn Price Soy Price Other Price Input Price ηT

Dynamic: Short Run

Corn acreage 0.50*** (0.013) –0.31*** (0.009) –0.03*** (0.006) –0.16*** (0.004)
0.04*** (0.007)

Soybean acreage –0.50*** (0.014) 0.38*** (0.012) –0.03*** (0.007) 0.16*** (0.004)
Other acreage –0.05*** (0.009) –0.03*** (0.007) 0.07*** (0.011) 0.02*** (0.003) —

Dynamic: Long Run

Corn acreage 0.39*** (0.034) –0.23*** (0.011) –0.07* (0.038) –0.09*** (0.010)
0.06* (0.031)

Soybean acreage –0.32*** (0.032) 0.26*** (0.014) –0.01 (0.015) 0.07** (0.030)
Other acreage –0.12* (0.061) –0.01 (0.015) 0.09* (0.045) 0.04* (0.020) —

Static

Corn acreage 0.61*** (0.010) –0.40*** (0.008) –0.02*** (0.004) –0.19*** (0.003)
0.03*** (0.003)

Soybean acreage –0.65*** (0.013) 0.48*** (0.010) –0.04*** (0.004) 0.20*** (0.004)
Other acreage –0.03*** (0.006) –0.04*** (0.004) 0.06*** (0.005) 0.01*** (0.002) —

Note: Standard errors are in parentheses and obtained by the delta method. ηT is the responsiveness of total acreage allocated to corn and 
soybeans with respect to same scaling changes in both prices. 

*, **, *** Significance at the 10%, 5%, and 1% levels, respectively.
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κ κ κ κ≡ +T 1 1 2 2 1 2( ) ( ), ,s s r r s r r . The total elas-
ticity ηT can then be defined as

κ

κη
κ =

∂
≡

∂
T

T
T 1

.
s

s
 [16]

By taking derivative with respect to κ  of 
the individual crop shares, and evaluating at  
κ = 1, this total elasticity can be expressed in 
terms of the individual elasticities as follows: 

η η η η η= + + +1 2
T 11 12 21 22

T T
( ) ( )

s s

s s
. [17]

The total elasticity, computed from the re-
ported individual price elasticities, is also re-
ported in Table 4. The elasticity ηT turns out 
to be equal to 0.04 and 0.06 for the short- and 
long-run cases, respectively, under the base-
line dynamic model, and equal to 0.03 under 
the static model. This shows an extremely in-
elastic response of acreage allocated to corn 
and soybeans: for instance, a doubling of the 
real price of both of these crops would result 
in an expansion of the cropland allocated to 
corn and soybeans of only 4% in the short 
run (6% in the long run). Although such a re-
sponse is very inelastic, it is actually some-
what more elastic than the total elasticity im-
plied by the estimate reported by Hendricks, 
Smith, and Sumner (2014). Although they do 
not report the total elasticity defined here, it 
is easily computed based on their individual 
elasticity estimates. For example, for their 
long-run elasticity values, the implied total 
elasticity is equal to 0.0025. The fact that 
Hendricks, Smith, and Sumner (2014) implied 
total acreage response is even more inelastic 
than our estimates, of course, is consistent 
with the fact that their study uses data for only 
the three main midwestern states (IL, IN, and 
IA), where these two crops already account 
for the vast majority of cropland devoted to 
annual crops. 

Given the estimates of the dynamic pa-
rameters Γ and the short-run response param-
eters B, we can project cumulated values of 
response parameters Bt for each year of t as 
follows: 

−

=

 
= ×  

 
∑ 



( 1)

1

t

tB B Γ   for  = 1,2,...,t  [18]

where we assume that the (permanent) 
changes in per acre revenues occur at = 1t .  
Figure 2 describes the adjustment of elastic-
ities calculated from the projected param-
eters based on equation [18]. All own- and 
cross-elasticities show a large adjustment in 
the first period. The adjustment path displays 
the oscillating pattern implied by crop rota-
tion effects, discussed by Eckstein (1984). 
These values converge to the long-run values 
quickly (most of the adjustment is completed 
after just three periods). The resulting total 
elasticity is low and quite stable in all periods, 
another illustration of the implications of crop 
rotation. 

Robustness

Because the parameters of the expected yields 
in equation [11] are estimated from a longer 
time series than for the acreage equation, 
as discussed earlier, the question arises as 
to whether the presumption of a linear time 
trend with the same coefficient for the entire 
period is appropriate. As noted by a reviewer, 
the widespread adoption of genetically engi-
neered (GE) corn and soybean varieties since 
the late 1990s might suggest the possibility 
of structural changes. As a robustness check, 
therefore, we also consider a more flexible 
representation of the trend variable; specifi-
cally, we let tT  be represent by a linear spline 
with two knots (Greene 2012, 159–60), yield-
ing separate trend coefficients for three sub-
periods: 1971–1985, 1986–2000, and 2001–
2015. Results are reported in Appendix Table 
A3. For corn we find that yield gains per year 
have indeed trended up, with the largest ex-
pected annual yield gain realized in the last 
subperiod. For soybeans, on the other hand, 
the first and last subperiods exhibit essentially 
identical estimated trend coefficients, whereas 
the middle period, 1986–2000, displays sig-
nificantly lower yield gains. For both corn and 
soybeans, these results are consistent with the 
results of Xu et al. (2013), who find that adop-
tion of GE varieties increased expected yields 
for corn but not for soybeans.

In the context of our acreage response 
model, in any event, trending yields matter 
because they enter into the determination of 
expected per acre revenues. To investigate 

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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how acreage response is affected by the more 
flexible specification of yield response, Ap-
pendix Table A4 reports the analog of Table 3, 
and Appendix Table A5 reports the analog of 
Table 4. It is verified that the results reported 
here are quite robust to a more flexible repre-
sentation of the yield response. 

5. Comparison with the Literature

Table 5 puts our results for acreage response in 
the context of findings from previous studies. 
This table focuses on studies that estimated 
both own- and cross-price elasticities; as noted 
earlier, several studies did not do that. Only 
two of the referenced studies estimated both 
short- and long-run elasticities, and the latter 
are denoted with “[LR].” Notwithstanding the 
difficulty of comparing estimates from studies 
that differ in scope, data, and methods, four 
observations appear in order. First, in most 
cases, corn and soybeans turn out to be sub-
stitutes, in accordance with what one should 
expect when the jointness arises because of an 
allocatable fixed input (land). Second, in stud-
ies conducted before 2000, roughly speaking, 

the own- and cross-price elasticities for corn 
tend to be smaller than (or equal to) those of 
soybeans, in absolute value, while this feature 
seems absent in more recent studies. Third, the 
absolute magnitudes of elasticities are larger 
after 2000. Fourth, our short- and long-run 
values are very similar to those presented by 
Hendricks, Smith, and Sumner (2014), except 
for somewhat increased acreage responses for 
corn in both the short and long run.

The magnitude of the estimate response of 
yields to crop prices has been somewhat con-
troversial. Berry and Schlenker (2011), using 
U.S. state-level data from 1961 to 2009, argue 
that the yield price elasticities of U.S. crops 
are no higher than 0.1. Analyzing years from 
1980, Scott (2013) obtains the upper bounds 
of U.S. corn and soybean yield elasticities as 
0.04 and 0.11, respectively, based on his in-
direct approach. Meanwhile, Goodwin et al. 
(2012) estimate the yield response with re-
spect to their interseasonal price (the average 
harvest-time futures prices in February) to be 
in the range 0.19 to 0.27 (for IN, IL, and IA 
over 1996–2010). They also find small but 
significant intraseasonal yield response (i.e., 
yield response in the early growing season). 

Figure 2
Adjustment of Acreage Responses to Changes in per Acre Revenues

https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
https://uwpress.wisc.edu/journals/pdfs/LE-94-4-07-Kim-app.pdf
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Miao, Khanna, and Huang (2016), focusing 
on rainfed counties (east of the 100th merid-
ian) over 1977–2007, obtain a relatively large 
and statistically significant corn yield price 
elasticity of 0.23, while the elasticity of soy-
bean yield response at the mean was found to 
be statistically not significantly different from 
zero. Our results, discussed earlier, agree with 
those of Miao, Khanna, and Huang (2016) for 
soybeans (for which we find a zero price elas-
ticity), whereas for corn we find a positive but 
small yield price elasticity (0.01), corroborat-
ing results reported by Berry and Schlenker 
(2011). 

6. Conclusion

The RFS is widely credited with contributing 
significantly to commodity price increases. 
This exogenous source of new demand for 

agricultural products provides an ideal setting 
to estimate the supply response for corn and 
soybeans, the major agricultural commodi-
ties produced in the United States. This paper 
estimates the U.S. corn and soybean supply 
responses by focusing on the most recent 11 
years (2005–2015), which have been most di-
rectly affected by the implementation of the 
RFS. In addition, in this period the impact of 
traditional government support programs has 
been minimal, making it easier to economet-
rically identify farmers’ supply responses to 
price signals. One of the main motives of in-
terest in our analysis is to assess the dynamic 
supply substitutability between corn and soy-
beans. Hence, the analysis focused on the 12 
midwestern states of the traditional corn belt, 
where most counties are typically observed 
to produce both crops. Acreage and yield 
responses are modeled separately. Acreage 
share equations maintain the standard theo-

Table 5
Selected Studies on U.S. Corn and Soybean Acreage Elasticities

Region Unit Period Elasticity Of

With Respect To

Corn Price  
(or Revenue)

Soy Price  
(or Revenue)

Lee and Helmberger 
1985a

IL, IN, IA, OH State 1948–1980 Corn acres   0.12 –0.17
Soy acres –0.23   0.35

Shideed and White 
1989b,c 

United States Nation 1951–1986 Corn acres   0.19 –0.10
Soy acres –0.18   0.41
Corn acres   0.26 [LR] –0.15 [LR]
Soy acres –0.69 [LR]   1.58 [LR]

Chavas and Holt 1990d United States Nation 1954–1985 Corn acres   0.07 –0.11
Soy acres –0.16   0.06

Orazem and 
Miranowski 1994e

IA County 1952–1991 Corn acres   0.10   0.02
Soy acres   0.01   0.33

Miller and Plantinga 
1999f 

IA County 1981–1994 Corn acres   0.93, 2.35 –1.05, –0.50
Soy acres –1.59, 0.55   0.53, 1.76

Arnade and Kelch 
2007

IA County 1960–1999 Corn acres   0.01 –0.04
Soy acres –0.03   0.05

Hendricks, Smith, and 
Sumner 2014c

IL, IN, IA Field 1999–2010 Corn acres   0.40 –0.31
Soy acres –0.46   0.36
Corn acres   0.29 [LR] –0.22 [LR]
Soy acres –0.33 [LR]   0.26 [LR]

This paperc 12 midwestern 
states

County 2005–2015 Corn acres   0.50 –0.31
Soy acres –0.50   0.38
Corn acres   0.39 [LR] –0.23 [LR]
Soy acres –0.32 [LR]   0.26 [LR]

a Values are based on their free-market regime. 
b Values are based on the results using futures price. 
c [LR] denotes long-run values.
d Values are with respect to own and cross revenues instead of prices. 
e Values are based on the results under rational expectations. 
f Numbers are paired with smallest and largest values across values for three counties under their unconditional model. 
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retical properties of homogeneity, adding-up, 
and symmetry.

Our results, under the dynamic models 
that we consider, indicate that the U.S. sup-
ply responses for corn and soybeans are larger 
in the short run than in the long run, and that 
they are quite inelastic. This outcome is at-
tributed to the strong cross-acreage dynamics 
related to crop rotation behavior. Given that 
the yield response is nearly zero, we obtain an 
estimated own-price supply response (at the 
mean) of 0.50 for corn and 0.38 for soybeans 
in the short run (and 0.39 and 0.26 in the long 
run). Our estimated elasticities are quite sim-
ilar to the short-run and long-run elasticities 
reported by Hendricks, Smith, and Sumner 
(2014), and support their conclusions on the 
impact of crop rotation conjectured by Eck-
stein (1984). 

Cross-price elasticities between corn and 
soybeans turn out to be negative, as expected, 
and relatively large in magnitude in the short 
run and long run. This means that, when both 
corn and soybean prices move together, the 
total acreage allocated to these two crops is 
very inelastic: the relevant total elasticity is 
0.04 in the short run and 0.06 in the long run. 
These results have implications for the future 
prospects of the RFS. The initial ambitious 
RFS mandate targets for total biofuel use have 
had to be scaled back because of the failure 
of commercial cellulosic biofuel production. 
Meanwhile, expansion of corn-based ethanol 
use is at present limited by the so-called blend 
wall. Hence, given the unfeasibility of scaling 
up cellulosic biofuel production, a possible 
avenue for expanding total biofuel consump-
tion is to promote use of biodiesel, which is 
not constrained by the blend wall (Irwin and 
Good 2016). Insofar as soybean oil is the 
marginal fuel for biodiesel production, as an
alyzed by Moschini, Lapan, and Kim (2017), 
expanding biodiesel production will require 
more soybeans. Because of the strong nega-
tive cross-elasticity of acreage response, as 
characterized in this paper, expanded demand 
for soybeans will put upward pressure on both 
soybean and corn prices. Indeed, given the ex-
tremely inelastic response of total acreage al-
located to these two crops, as estimated in this 
paper, we conclude that the ability of the U.S. 
corn and soybean production sector to accom-

modate the demand shock due to the RFS is 
quite limited. These results are consistent with 
the observation that, while world production 
has grown in response to commodity price 
increases over the 11 years of our study, the 
U.S. share of world production of both corn 
and soybeans has been declining. 
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