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a b s t r a c t

This article examines the role of a firm’s internal network in determining plant shutdown
decisions in response to environmental regulations. Using unique plant-level data for U.S.
manufacturing industries from 1990 to 2007, we find evidence that, in response to
increasingly stringent environmental regulations at the county level, multi-plant firms do
exercise their greater flexibility in adjusting production, relative to single-plant firms.
Specifically, in regulated counties, the likelihood of a plant shutting down is higher for
multi-plant firms. Moreover, we measure the firm internal network effect at the local,
neighborhood, and the wider-area levels, as defined by the number of affiliated plants
clustered in different regional levels. Their effects on plant closure decisions for dirty
subsidiaries vary with the network level. We further decompose the neighborhood
network into those in regulated and unregulated neighborhood counties, and examine
how these network metrics are associated with closure decisions of dirty plants affiliated
with multi-plant firms. The presence of more sibling plants residing in neighboring
counties that are free from regulatory controls are associated with a higher closure
probability of dirty plants in a regulated county.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Environmental regulations have long been of considerable policy interest, and remain controversial. Supporters of reg-
ulatory controls point to significant health benefits associatedwith reductions in environmental pollution, while critics blame
environmental regulations for productivity drops, job losses, and relocation of manufacturers. For both sides of the argument,
a critical question relates to how firms respond to environmental regulation. Empirical contributions in this area have sought
to quantify such response (Henderson, 1996; Becker and Henderson, 2000, 2001; List et al., 2003b; Becker, 2005). However,
the existing literature has paid little attention to the role of a firm’s plant structure. Because multi-plant firms may behave
differently than single-plant firms, multi-plant firms’ decisions about relocation, in response to regulatory controls, may
impact the effectiveness of environmental regulations. They also have the potential to play a major role in the dynamics of
employment, evolution of regional economies, and restructuring of industry. This is relevant because multi-plant firms
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account for a large share of U.S. manufacturing activitiesdas noted by Bernard and Jensen (2007), they employ 78% of the
manufacturing workforce and produce 88% of the output. Within the same polluting industry and residing in the same county
with regulatory pressures, multi-plant firms are also more likely to have emission above the critical level that triggers the
need for regulatory compliance than single-plant firms (Becker and Henderson, 2000, 2001).

In this article, we follow Bernard and Jensen (2007) by focusing squarely on the probability of plant death, and investigate
a channel that was not explored in their analysis. Specifically, we study the impact of environmental regulation on plant
death: the extent to which stringent regulation leads “dirty” plants to exit an industry. In the process, the effects on plant
closure of plant attributes, local agglomeration, and some county characteristics are investigated as well. We also examine
whether multi-plant firms are more or less likely to shut down affiliated plants in response to stringent regulatory controls.
Moreover, information on existing plants affiliatedwith the same headquarters is used to investigate the role of firms’ internal
network. Wemeasure internal network effects at three different regional levels: local, neighborhood, and the wider area, and
we examine how these internal network effects interact with exposure to environmental regulations. We further decompose
the neighborhood network into those in regulated and unregulated neighboring counties, and examine how these network
measures affect closure decisions of dirty plants (relative to clean ones) affiliated with multi-plant firms.

The particular empirical focus of this article on the role of multi-plant firms, and their internal structure, is motivated by
the theoretical ambiguity of howdifferentlymulti-plant firms, relative to single-plant firms, may respond to external pressure
affecting profitability (Bernard and Jensen, 2007). In our context, multi-plant firms may exercise their greater flexibility in
different ways. The availability of multiple plants may reduce the closure probability of a given plant because the firm may
abate pollution by reallocating production activities across plants. Alternatively, a multi-plant firm may use plant shutdown
as themargin of adjustment to complywith environmental regulation. The costs of a plant’s closure are lessened by the ability
to shift production activities (and associated jobs) from plants in regulated areas to plants in unregulated areas. The con-
sequences of plant closure are clearly less draconian for multi-plant firmsdclosure does not imply the end of the firm. The
options available to single-plant firms in regulated areas, on the other hand, are more limited.

To carry out the empirical analysis outlined in the foregoing, we compile a unique detailed plant-level dataset for the U.S.
manufacturing sector from 1990 to 2007. To measure plants’ exposure to environmental compliance costs, we match plant-
level data with county nonattainment/attainment designations under the Clean Air Act Amendments (CAAA) legislation of
1990. By exploiting the spatial and time variations of the CAAA, we estimate the heterogeneous responses of multi-plant firms
and single-plant firms to county nonattainment designations. In particular, we propose a triple difference-in-difference
model with interaction among a dirty industry dummy, a county regulation indicator, and the regional firm internal
network that varies with exposure to environmental pressures.

We obtain some novel and interesting results. First, conditional on plant attributes and county characteristics, we find that
nonattainment status under the CAAA legislation leads to some exit of dirty plants in regulated areas. Moreover, we find that
multi-plant firms are more likely to close plants in regulated counties as compared to single-plant firms. The closure
probability is positively correlated with the plant’s distance to the headquarters and the number of existing similar plants
affiliated with the same parent company. Second, with respect to firms’ internal network effects, we find that the effects of
regulation vary with the network level. At the neighborhood level, the larger the number of affiliated plants located in
counties sharing borders with the regulated county, the more likely an affiliated dirty plant in the regulated county is to be
closed. Third, when conditioning on the neighbor network effect by its exposure to environmental pressures, we find that the
presence of more sibling plants residing in neighboring counties that are free from regulatory controls is associated with a
higher closure probability of dirty plants in regulated counties. Such internal network effects in regulated neighboring
counties are more pronounced in the post-CAAA period of 1990e1999.

This article contributes to the empirical literature that studies the impact of environmental regulations on firms’ site
choices (Jeppesen et al., 2002; Brunnermeier and Levinson, 2004). One line of studies uses region-level data to examine the
effects of regulatory controls on plant births. Using county-level data on plant birth from the U.S. Census Bureau during
1963e1992, Henderson (1996) shows that the ground-level ozone nonattainment regulation leads to the relocation of
polluting plants frommore to less polluted areas. The follow-up study by Becker and Henderson (2000) further distinguishes
the county-level plant births by corporate and nonaffiliated sectors. Whereas the former refers to multi-plant firms, the latter
indicates single-plant firms. They find a shift in plant births from the more regulated multi-plant firms to the less regulated
single-plant firms. List et al. (2003a,b) revisit the conjecture of a negative correlation between environmental regulation and
manufacturing plant birth. Using a county-level dataset for the State of New York from 1980 to 1990, their empirical estimates
suggest that pollution-intensive plants adversely respond to county nonattainment designations. Using county-level data,
List et al. (2004) examine the heterogeneous effects of environmental regulations on plant birth decisions for domestic and
foreign plants. They find evidence that domestic plants are responsive to environmental regulations, while foreign plants are
not. Also, environmental regulation stringency significantly impacts the site choices of relocating plants (List et al., 2003).

Another line of inquiry employs plant-level data to examine the effects of regulation stringency on plant location choices.
Levinson (1996) considers six environmental regulatory measures for single-plant firms and branches of the 500 largest
multi-plant manufacturers, and finds little evidence about the negative impacts of stringent state-level environmental
regulations on plant births. List and Co (2000) focus on the state-level environmental regulatory effects on foreign multi-
national corporations’ new plant site choices from 1986 to 1993, and document a negative relationship between environ-
mental stringency and plant birth. Tole and Koop (2010) examine the effects of environmental standards on plant birth
decisions of gold mining multinationals across countries.
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This article also adds to the literature in empirical industrial organization that examines the role of firm attributes in
determining firms’ site choices.1 Using plant-level data from the Censuses of Manufactures from 1987 to 1997, Bernard and
Jensen (2007) find that plants affiliated with multi-plant firms or with U.S.-based multinationals have significantly greater
chances of being shutdown, controlling for plant attributes.2 Similarly, Kneller et al. (2012), based on Japanese plant-level
data, find that plants belonging to multi-plant firms are more vulnerable to closure compared with similar single-plant
firms. Moreover, they show that multi-plant multinationals are even more likely to shut down their affiliated plants. By
contrast, this article aims to highlight the role of firms’ internal structure in response to stringent environmental controls. As
such, our work is also related to recent research examining how firms spread the impacts of local shocks across regions
through their internal network of affiliated plants. Local positive investment shocks in Giroud and Mueller (2015) are
measured by the introduction of new airline routes between headquarters and affiliated plants, whereas Giroud and Mueller
(2017) study local negative employment shocks by exploiting the regional variations in house prices during the Great
Recession. In our context, the local shock of interest is the changing stringency of environmental regulation.

The remainder of the article is organized as follows. Section 2 briefly summarizes the CAAA environmental regulation, and
further expands on how regulation-induced cost shocks may affect plant closure. Section 3 presents data sources and vari-
ables construction. Section 4 provides empirical strategy and descriptive statistics. Section 5 presents results and robustness
checks. Section 6 concludes.

2. Environmental regulation

The CAAA of 1990 requires the U.S. Environmental Protection Agency (EPA) to classify each county into pollutant-specific
nonattainment and attainment categories, based upon the ambient concentrations of four criteria air pollutants: SO2, CO, O3,
and TSPs. Each July, the EPA officially reclassifies the pollutant-specific nonattainment/attainment designation for every U.S.
county.

The county nonattainment designation serves as an indicator of a plant’s exposure to stringent environmental regulations.
This exposure varies with both pollutant type and plant characteristics. When a county is designated as nonattainment status
for a pollutant, the state where the county is located is required to develop a State Implementation Plan that lays out specific
regulations for everymajor source of the pollutant for the nonattainment county. The stringency of regulatory controls differs
between existing and new plants. Whereas the former is subject to “reasonably available control technology” (RACT)
involving the retrofitting of existing equipment, the latter is exposed to the “lowest achievable emission rate” (LAER), which
requires the installation of the cleanest available technology. In sharp contrast, when a county is classified into the attainment
category, existing plants are not subject to any technological standards, and new small plants are exempt from the regulation.
Only the so-called class-A new polluters, those with the potential to emit over 100 tons per year of a criteria air pollutant, are
required to comply with the “best available control technology” (BACT) standard, a weaker standard than LAER.

2.1. Regulation and plant closure

A plant’s exposure to increasingly stringent environmental regulations clearly has the potential to affect a firm’s pro-
duction costs in a nontrivial manner. How a firm deals with such regulation-induced cost shocks depends on many factors,
including a plant’s age and size, and a plant exiting the industry is one possible response. The theoretical and empirical
literature on the determinants of plant death has evidencedmany relevant factors that may affect firms’ survival. Of particular
relevance to our interest in the role played by firms’ internal structure is the question of whether plant closure pertains to a
single- or multi-plant firm. Earlier theoretical work noted the importance of strategic consideration in an oligopolistic setting,
and suggested that larger (multi-unit) firms may bemore likely to close a plant than a single-plant firm (Reynolds, 1988). This
is somewhat reminiscent of Ghemawat and Nalebuff (1990) result that, in the context of single-plant firms, large firms exit
before small firms do, although Whinston (1988) cautions that, when firms have multi-plant operations, there is no strong
analog of such a prediction.

The theoretical ambiguity can be appreciated intuitively. Germane strategic considerations are related to Mankiw and
Whinston (1986) “excess entry” result for oligopolistic industries, whereby firms have a private incentive to enter an in-
dustry beyond social optimality because of a business stealing effect (some of the entrant’s profits arise from incumbents’
reduced sales, thus entry causes a negative externality on existing firms). Symmetrically, in the context of exit, a plant closure
is akin to a positive externality on the remaining firms. Multi-unit firms can internalize some of the effects of a plant-closure
decision, something obviously not possible for a single-plant firm (for whom plant closure and firm death are one and the
1 Related studies focus on relocation decisions of headquarters within the nation (Lovely et al., 2005; Davis and Henderson, 2008; Henderson and Ono,
2008; Strauss-Kahn and Vives, 2009) and across countries (Voget, 2011).

2 We note at this juncture that our article differs from Bernard and Jensen (2007) along several dimensions. First, the two papers’ research questions are
distinct. We focus on the construction of firms’ internal network for polluting plants, and how the network affects the closure decision of polluters, whereas
Bernard and Jensen (2007) highlight the role of firm structure (including both multi-plants and multi-nationals) in the operating decision of closing a plant.
Secondly, we start with polluting plants as reported by the US EPA and then look for their affiliated plants in the manufacturing sectors, during the
1990e2007 period, while they look at the universe of all establishments in the United States from 1987 to 1997. Hence, as discussed later, the two samples
display some differences, suggesting some heterogeneity in the role of firm structure on closure decisions between polluting plants and general plants.
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same). Such considerations suggest that multi-plant firms are more likely to close a plant than a single-plant firm is.
Conversely, however, a multi-plant firm is likely to experience greater flexibility and be able to reallocate some resources
across plants as needed (Giroud andMueller, 2015). Also, insofar asmulti-plant firms are diversified, theymay also experience
economies of scope, end enjoy greater financial resilience. All of that suggest that, in fact, multi-plant firmsmay bemore likely
to withstand external shocks without the need to close a plant.

The empirical literature, while somewhat inconclusive as to whether or not multi-plant firms are more likely to close a
plant, draws a useful distinction between a plant’s unconditional probability of closure and the analogous conditional
probability in relation to its type of structure (single or multi plant). This is because some attributes (e.g., age, size), found to
be associated with the probability of plant closure, may be unevenly distributed across ownership types. Bernard and Jensen
(2007) find that plants that belong to multi-unit firms are unconditionally less likely to close than single-plant firms are. But
they also show that plants belonging to multi-plant firms tend to possess characteristics that are associated with higher
survival probability. Upon conditioning on plant characteristics, Bernard and Jensen (2007) find that multi-plant firms are
now more likely to close a plant than single-plant firms.

The theoretical studies noted earlier have typically couched the problem in terms of the exit pattern in a so-called
declining (sunset) industry, that is one marked by an exogenous decline in market demand. Even for industries with het-
erogeneous firms, the declining demand side can be conceived as a uniform pressure on the industry, affecting all firms and
plants in the same direction. In our context, however, we are concerned with the effects of a more stringent regulation that
increases firms’ compliance costs. Such regulation-induced cost shocks have been shown to cause plant closure in similar
settings (e.g., Muth et al., 2002). Because compliance costs are different in attaining and non-attaining counties, regulation
affects firms’ cost structure differently, depending on their exposure to the regulation. In fact, the spatial heterogeneity of
regulation has been shown to alter significantly the destination choice of relocating plants (List et al., 2003). Regulation-
induced cost shocks also increase the cost heterogeneity within the industry, with complex implication for the probability
of individual plant’s death. The lack of clear predictions as to how regulation may affect plant closure provides an additional
motivation to investigate the issue empirically.

3. Data

The data pertain to the U.S. manufacturing sector from 1990 to 2007.We assemble these data from a variety of sources. The
plant-level data are from the National Establishment Time Series (NETS) database.3 The county-level environmental regu-
lation is obtained from the EPA. The Census Bureau provides the County Business Pattern (CBP) data and the Business Dy-
namics Statistics (BDS). The former allows us to construct county-by-industry characteristics, while the latter is used to create
measures for the industry-level entry and exit rates. The Bureau of Labor Statistics (BLS) supplies the county-level labor force
data and the industry-level Producer Price Index (PPI).4

The NETS database, developed by Walls and Associates through a joint venture with Dun and Bradstreet, covers over 300
fields and 40 million unique business establishments on a national basis for each year since 1990. The plant-level data in the
NETS database include a handful of variables capturing plants’ industrial activities, including the number of employees, the
value of sales, an indicator of whether or not it exports, and the four-digit SIC industry code. To keep track of each plant, NETS
assigns the Data Universal Numbering System (DUNS) number as a unique identifier. It also provides plants’ geographic
address and (re)location information including the five-digit Federal Information Processing Standard county code, as well as
the first and last year in which a plant conducted business. More importantly, the NETS database also provides headquarters
information for each plant, specifically the headquarters’ names, DUNS numbers, and geographic locations.

To create our unique sample of plants with environmental interests, we link the NETS database to the National Emission
Inventory (NEI) of the EPA.5 The NEI database contains information about plants that emit criteria air pollutants for all areas of
the United States. We match these recorded polluting plants with those collected in the NETS database. For each matched
plant, we then find its related plants within the NETS database through the parent company for the entire study period. We
restrict our search to those in manufacturing industries.6 Furthermore, we merge the plant-level data with pollutant-specific
county nonattainment designations under the CAAA legislation. The Green Book Nonattainment Areas for Criteria Pollutants
3 NETS data have been used to study issues related to business relocation and business ownership (Rosenthal and Strange, 2003; Kolko and Neumark,
2008, 2010; Neumark et al., 2011). Neumark, Wall, and Zhang (2011) provide a detailed description of the NETS and an assessment of the quality of the NETS
database along many dimensions, including measurement of employment data, capture of birth, death, and relocation, and linkages of plants to their parent
company.

4 Since 2004, the industry-level data is reported on the three-digit NAICS industry level. We convert the three-digit NAICS industry to the two-digit SIC
industry to make it consistent with the data prior to 2004.

5 Cui et al. (2016) discuss the details of the procedure linking the NEI and NETS databases.
6 The Appendix includes a detailed discussion about exactly how data collection and merging was done by linking different data sources. Briefly, we

match polluting plants in the NEI database with those that appear in the NETS database, using a name and plant identifier (i.e., DUNS number) matching
algorithm. This matching procedure identifies 18,743 unique polluting plants, roughly half of manufacturing polluters reported in the NEI database. Next,
for the matched plants, we use the NETS database to sibling plants, i.e., those affiliated with the same parent company (i.e., headquarters). We restrict our
sample search to plants in the manufacturing industry as determined by four-digit SIC codes (between 2000 and 4000). We end up with 1.2 million plant-
by-year observations from 1990 to 2008, encompassing 153,582 unique plants affiliated with 44,069 headquarters.



Fig. 1. Number of Counties with Nonattainment Status and Number of Counties with Changed Status for Any Criteria Air Pollutants. (Note: the left Y axis is for the
number of any NA, while the right Y axis is for the number of changed status.)
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from the EPA indicates whether only part of a county or the whole county is in nonattainment for each criteria air pollutant.7

For each of four criteria pollutants (CO, SO2, O3, and TSPs), we assign a county to the nonattainment category if the whole
county or part of the county is designated with nonattainment status.8

Fig. 1 plots the number of counties with nonattainment status and the number of counties with changed nonattainment
status for any criteria air pollutants from 1978 to 2014. The data are calculated from the EPA Green Book. The number of
counties with nonattainment designations drops steadily from over 800 in the late 1970s, when the CAAAwas implemented,
to around 300 in 2002. Due to the implementation of strict standards for TSPs and ground-level O3, the total number of
nonattainment counties jumps back to about 500 around 2004. Moreover, in comparison to our sample period of 1990e2007,
there exists substantial variations in county-level nonattainment/attainment designations in both earlier and later sample
periods, allowing us to identify the effects of county-level environmental controls on plant closure decisions.

We look closely at the pollutant-specific nonattainment designations. Fig. 2 decomposes the information provided by Fig.1
for each individual pollutant. For SO2, variations in nonattainment status are stable during the study period of 1990e2007. For
CO, there are substantial variations during the period of 1990e2002. For O3 and TSPs, significant changes in nonattainment
designations mainly occur post-CAAA (i.e., 1990e1996) and the late sample period (i.e., 2002e2007). The latter is due to the
new implementation of strict standards associated with these two pollutants.
3.1. Variables

Table 1 provides a complete list and brief descriptions of variables used in this study, including the outcome variable and
other variables of interest that may be influential factors in determining plants’ site choices.

The variable Death is an indicator variable that identifies the year in which a plant shuts down. If a plant is shut down in
year tþ 1, the NETS database then puts t in the category of the “last year”when the business was still active.9 Hence, for plant i
in year t this variable is defined as:

Deathitþ1 ¼
�
1; if the last active year is t
0; otherwise
7 See http://www.epa.gov/air/oaqps/greenbk/index.html.
8 The formation of ground-level O3 is a complicated chemical process that involves Volatile Organic Compounds (VOCs) and Oxide of Nitrogen (NOx)

when these two react in the presence of sunlight. We classify a county as nonattainment for O3 if it is in nonattainment for NOx and/or O3, including both 1-
h and 8-h standards. In the case of TSPs, a county is defined as TSPs-specific nonattainment when it is in nonattainment for PM10 and/or PM2.5.

9 The NETS database keeps tracks of the universe of establishments. In our sample, all plants are associated with a “last year” variable, which is coded as
either 2008 (the end of our sample period) or a prior year. The latter clearly identifies an instance of plant closure, whereas the former is not informative on
this matter (the establishment could still be in business, or it could have closed in 2008). Given this ambiguity, we drop 2008 observations from the sample.

http://www.epa.gov/air/oaqps/greenbk/index.html


Fig. 2. Number of Counties with Pollutant-Specific Nonattainment Status and Number of Counties with Changed Status. (Note: the number of pollutant-specific
NA refers to the left Y axis, and the number of changed status refers to the right Y axis.)

J. Cui, G. Moschini / Journal of Environmental Economics and Management 101 (2020) 1023196
Multi is an indicator variable that identifies whether plant i in year t belongs to a multi-plant firm, (i.e., if there exists at
least one other plant that shares the same headquarters DUNS number) it is a single-plant firm otherwise.10 Note that the
multi-plant affiliation status may vary with time due to changes in plant ownership. Hence:

Multiit ¼
�
1; if there exists another plant with the same headquarter’s DUNS number
0; otherwise
To assess the effects of being associated with multi-plant firms, we create three distinct metrics of a firm’s internal
network, based upon the number of affiliated plants across regions. For a plant i operating in industry j and located in county c,
let NL

ijct denote the number of other plants affiliated with the same firm that also operate in industry j and are located in

county c in year t. Similarly, let NN
ijct denote the number of other plants affiliated with the same firm that also operate in

industry j, but which are located in neighboring counties (i.e., counties that share a border with county c). Let NW
ijct denote the

number of other plants affiliated with the same firm that also operate in industry j but are located outside county c and its
immediate neighborhood. For single-plant firms, of course, NL

ijct ¼ NN
ijct ¼ NW

ijct ¼ 0. Given that, we define the local network

variable LocalNetijct , the neighborhood network variable NbrNetijct , and the wider-area network variable WideNetijct as:

LocalNetijct ¼ ln
�
1þNL

ijct

�

10 Regarding the data quality of multi-plant status, the NETS database includes a unique D&B establishment identifier (the DUNS number), the estab-
lishment location, and the headquarters DUNS number. It indicates whether an establishment is a stand-alone firm or a branch of a multi-plant firm.
Establishments affiliated with the same headquarters (i.e., multi-plant firms) are linked and tracked across years. If a plant is affiliated with a multi-plant
firm, the NETS provides its headquarters information including the name, location, and DUNS number. If a plant is labelled as a single plant firm, the
headquarters is the plant itself. Regarding the quality of headquarters information provided by the NETS database, Neumark et al. (2011) assess the linkages
of establishments to their parent firms, using a sample of establishments in California, and find that the tracking of firms’ establishment works quite well.
Thus, we conclude that the variation in multi-plant status is unlikely to be affected by measurement error.



Table 1
Variable list.

Variable Definition Source/Explanation

Plant Characteristics
Sales value of deflated sales NETS
Employment number of employment NETS
Labor

productivity
value of deflated sales per labor employment NETS, calculated

Age current year subtract first recorded year NETS, calculated
Export status equals 1 if exports, and 0 otherwise NETS
Foreign

ownership
equals 1 if owned by foreign firms, and 0 otherwise NETS

Multi equals 1 if there exists one other plants with the same headquarters, and 0 otherwise NETS, calculated
Death equals 1 if current year is the last business year, 0 otherwise NETS, calculated
Takeover equals 1 if it changes headquarters, and 0 otherwise NETS, calculated
Distance to Hdq the log distance of a plan to headquarters NETS, calculated
Multi-industry the number of two-digit SIC industries in which headquarters have plants NETS, calculated
LocalNetijct the (log) one plus the number of affiliated plants in county c and industry j at time t NETS, calculated
NbrNetijct the (log) one plus the number of affiliated plants in counties sharing border with county c and industry j at t NETS, calculated
WideNetijct the (log) one plus the number of affiliated plants in industry j but outside or local and neighboring areas at t NETS, calculated
RegNbrNetijct the (log) one plus the number of affiliated plants in regulated counties sharing border with county c and in

industry j at time t
NETS, calculated

UnregNbrNetijct the (log) one plus the number of affiliated plants in unregulated counties that share border with county c and
in industry j at time t

NETS, calculated

County Characteristics
Any Reg equals 1 if NA for at least one pollutant, and 0 otherwise EPA, calculated
SO2 Reg equals 1 if NA for SO2, and 0 otherwise EPA
CO Reg equals 1 if NA for CO, and 0 otherwise EPA
O3 Reg equals 1 if NA for O3, and 0 otherwise EPA
TSPs Reg equals 1 if NA for TSPs, and 0 otherwise EPA
Agglomeration the logarithm of one plus the number of plants outside of its own internal network CBP, calculated
Property tax median real estate tax rates in 2005 ACS
Road density road length per land area ArcGIS, calculated
Unemployment

rate
unemployment divided by labor force BLS, calculated

Industry-county
wage

industry-specific annual payroll per employment CBP, calculated

Industry Characteristics
PPI producer price index at two-digit SIC industry BLS
Entry birth plants divided by total existing plants Census of Bureau,
Exit death plants divided by total existing plants Census of Bureau
Sunk costs 1-min{entry, exit} Bernard and Jensen

(2007), calculated
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NbrNetijct ¼ ln
�
1þNN

ijct

�

WideNet ¼ ln
�
1þNW

�

ijct ijct
We further distinguish the firm’s internal network in neighboring counties into regulated and unregulated regions. Let
NRN
ijct and NUN

ijct denote the number of neighborhood plants associated with the same firm that are located in regulated or

unregulated neighboring counties, respectively. Regulated counties here means those designated with at least one pollutant-
specific nonattainment status (by construction, therefore, NRN

ijct þ NUN
ijct ¼ NN

ijct). We define the regulated and unregulated

neighborhood network variables, respectively, as:

RegNbrNetijct ¼ ln
�
1þNRN

ijct

�

UnregNbrNet ¼ ln
�
1þNUN

�

ijct ijct
The unregulated neighborhood network effect is more likely to trigger the death decision for plant i in the regulated
county c than the regulated neighborhood network, because the former requires less cost of resources reallocation from plant
i in the regulated county c to other affiliated plants in the neighborhood counties free from regulation that the latter demands.

For each plant affiliatedwith amulti-plant firm, the variableDistanceit is defined as the (log) distance of plant i to the firm’s
headquarters. This variable provides another measure controlling for the impacts of strategic decisions made by a parent
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company on its affiliated plants. The variable MultiIndustryit is defined as the number of two-digit SIC industries in which a
firm has associated plants at time t.

To control for the possible impacts of ownership changes, we define the variable Takeoverit as an indicator variable that
flags the year ownership changes, which for us is defined as when a firm’s headquarters’DUNS number changes at time t. That
is:

Takeoverit ¼
�
1; if headquarter’s DUNSitsheadquarter’s DUNSit�1
0; otherwise
In some cases, plants may switch between multi-plant and single-plant affiliation status due to mergers and acquisitions.
Unfortunately, the NETS database does not provide further information about types of ownership changes.

The variable Regct is our measure of a plant’s environmental regulatory pressure, which we define as an indicator variable
that denotes a county designated as having nonattainment status for at least one of the four air pollutants in year t. That is:

Regct ¼
�
1; if county c is nonattainment for at least one criteria air pollutants
0; otherwise
This regulation variable is also noted as “Any NA” in what follows. To check the robustness of results, we consider
pollutant-specific nonattainment designations as alternative measures by analogously defining the variable Regpct separately
for each pollutant p2fSO2;CO;O3;TSPsg.

Let NA
ijct denote the number of existing plants located in the same county and industry as plant i, but outside of the firm’s

internal network. Then the variable Agglomerationijct ¼ lnð1þNA
ijctÞ is used to proxy for local agglomeration.

To identify the role of firms’ internal network in manufacturing site choices, we also add a handful of plant characteristics
controls. Both existing theoretical and empirical studies suggest that plant age plays an important role in determining plant
death. We define Age as plant years of operation, specifically as the difference between the current year and the first recorded
NETS year, starting from 1990. Plants that are in their first recorded year are given an age of one. Plant Size, measured by the
log number of employees, is included as well. In addition, plants’ log values of deflated sales per labor is added as a raw
measure for Labor productivity at the plant level.

As predicted by Melitz-type trade models (Melitz, 2003), productive plants are, ceteris paribus, more likely to export than
lower productivity plants due to the interaction between heterogeneous productivity and fixed costs of exporting. This
positive correlation between export decision and productivity has been documented in the empirical trade work (Bernard
and Jensen, 2004). In addition, the literature examining heterogeneous firms and outsourcing suggests causality in high
productivity and outsourcing decisions (Helpman et al., 2004; Tomiura, 2007). To further control unobservable productivity,
we include an Export Status indicator and Foreign Ownership indicator. The former equals one when a plant exports and zero
otherwise, while the latter takes a value of one if a plant is owned by a foreign firm and zero otherwise. These two binary
variables are time-invariant, as provided in the NETS database.

For robustness, we further control for industry and geographic factors that may cause variations in plants’ shutdown
decisions. The measure of county-level tax rates is the median 2005 real estate taxes by county obtained from the American
Community Survey (ACS). Another county-level variable is road density, which is measured by the road length of six different
road categories per land area.11 This variable helps proxy the effects of local infrastructure on location decisions of manu-
facturers. To examine the local labor costs over the study period, we account for the county-level unemployment rate from
the BLS. We also construct industry-by-county wage rate based on the ratio of annual payroll and employment.

The magnitude of sunk entry costs is important in determining the steady-state equilibrium rate of firm birth and death
within an industry. In attempt to measure the unobserved entry costs, the minimum of industry entry and exit rates used in
Bernard and Jensen (2007) is implemented in the regression. That is, EntryCostjt ¼ 1�minfentryratejt ; exitratejtg. The entry
and exit rates computed from the BDS are measured at the three-digit SIC industry level. Finally, to control for unobserved
industry heterogeneity, we include a full set of industry linear trends. State linear trends are also added to absorb unob-
servable state characteristics varying with time.

3.2. Descriptive statistics

Our data sample is an unbalanced panel with more than 1.2 million plant-by-year observations over the 1990e2007
period. These observations are obtained from 153,582 unique plants affiliated with 44,069 unique headquarters.
11 The ArcGIS provides a detailed U.S. road map covering everything from all interstate highways to important local roads. This map defines six road
categories: (1) freeway or other major road, (2) major road less important than a freeway, (3) other major road, (4) secondary road, (5) local connecting
road, and (6) important local road. We calculate the county-level road length, using the toolbox of “intersect” in the ArcGIS software. This toolbox helps us
compute the length of each road cut by county boundary. For each county, we then add up the road length in all six road categories using equal weights for
all categories except the interstate highway, which includes two-way traffic.



Table 2
Summary statistics.

Variable Mean Std. dev. Min Max Multi-plant mean Single plant mean

Deflated Sales 18,579.51 61,657.21 0.00 5,353,243.00 20,273.74 10,597.12
Employment 151.10 456.60 1.00 30,000.00 165.62 82.69
Sales per labor 132.79 1384.86 0.00 332,752.30 130.32 144.45
Age 6.69 5.14 0.00 18.00 6.64 6.94
Death 0.05 0.21 0.00 1.00 0.05 0.02
Birth 0.05 0.21 0.00 1.00 0.05 0.04
Takeover 0.46 0.50 0.00 1.00 0.44 0.56
Export status 0.19 0.39 0.00 1.00 0.17 0.27
Foreign ownership 0.16 0.36 0.00 1.00 0.17 0.09
Multi-industry 3.05 2.76 1.00 17.00 3.49 1.00
NL
ijct 1.70 2.02 1.00 41.00 1.85 1.00

NN
ijct 0.56 1.81 0.00 44.00 0.68 0.00

NW
ijct 29.56 56.47 0.00 386.00 35.83 0.00

NRN
ijct 0.44 1.57 0.00 42.00 0.54 0.00

NUN
ijct 0.12 0.77 0.00 37.00 0.14 0.00

NRW
ijct 21.14 39.57 0.00 283.00 25.62 0.00

NUW
ijct 8.42 18.35 0.00 166.00 10.21 0.00

Any Reg 0.56 0.49 0.00 1.00 0.55 0.61
SO2 Reg 0.04 0.18 0.00 1.00 0.04 0.03
CO Reg 0.20 0.40 0.00 1.00 0.18 0.26
O3 Reg 0.50 0.50 0.00 1.00 0.49 0.55
TSPs Reg 0.23 0.42 0.00 1.00 0.22 0.27

Note: see text for all variable definitions.

J. Cui, G. Moschini / Journal of Environmental Economics and Management 101 (2020) 102319 9
Table 2 provides summary statistics for the main variables used in the analysis.12 The value of sales is deflated by the two-
digit SIC industry PPI. Approximately 80% of observations are plants affiliated with multi-plant firms, while the remaining are
single-plant firms.13 The last two columns of Table 2 summarize the mean differences between multi-plant and single-plant
status across plant characteristics. Plants that belong to multi-plant firms are larger than those of single-plant firms in terms
of value of sales and number of employees. However, relative to the latter, plants of multi-plant firms have lower labor
productivity measured by deflated sales per worker.When location decisions are concerned, plants affiliatedwithmulti-plant
firms have higher death and takeover rates than those with single-plant firms. In addition, compared with single-plant firms,
multi-plant firms have a relatively higher fraction of plants owned by foreign companies, but a lower fraction of exporting
plants. When it comes to the exposure to environmental regulations, the fraction of single-plant firms in counties that are in
nonattainment status for at least one pollutant is larger than that of multi-plant firms residing in nonattainment counties.
This result holds for all four different pollutant-specific regulations, except SO2 nonattainment designation.

Table 3 provides mean values for plant attributes by firm structure and county nonattainment status.14 For instance, plants
that are part of single-plant firms and located in any nonattainment counties, on average, have 80 employees. Several
interesting points arise from Table 3. First, for each type of firm ownership, either single-plant or multi-plant, the number of
plants located in nonattainment counties is larger than that residing in counties free from environmental regulations. This
indicates that a substantial fraction of plants is subject to regulatory burdens. Second, plant size differs by exposure to
environmental pressures. Regardless of multi-plant status, plants residing in nonattainment counties are younger and smaller
in size (in terms of the number of employees), but have higher labor productivity (deflated sales per worker) than those
exempt from environmental burdens. Third, regardless of multi-plant ownership, plants located in nonattainment counties
have higher death rate, but slightly lower takeover rates than those in attainment counties.When comparing plants located in
nonattainment counties, but differing in multi-plant status, multi-plant firms tend to have larger death and takeover rates
relative to similar single-plant firms. Lastly, multi-plant firms have, on average, more subsidiaries located in nonattainment
counties than in attainment counties.
12 In the Supplementary Appendix, as suggested by an anonymous reviewer, we also provide summary statistics with time-invariant multi-plant status
(Table SA1). This time-invariant indicator is defined as the first-year status that a plant is affiliated with a multi-plant firm.
13 As noted by an anonymous reviewer, some statistical differences between our article and Bernard and Jensen (2007) emerge. In regards to the fre-
quency of multi-plant and single plant firms, it is important to note that our data merging starts from a list of dirty plants that have a DUNS number as
reported in the NEI, and then looks for their affiliated siblings in the NETS database. For a dirty plant belonging to a single-plant firm, there are no siblings.
For a dirty plant affiliated with a multi-plant firm, its siblings in the manufacturing sectors are all included in the final sample. As we focus on the role of the
firm’s internal network, our sample construction is unlikely to have a selection issue. This composition difference may account for some statistical dif-
ferences in plant characteristics, in relation to multi-plants and single plants, between our sample and that studied by Bernard and Jensen (2007).
Regarding the exporting status, the NETS database only provides the time-invariant status of a plant’s exporting decision, whereas the Census database
reports the time-variant exporting status of each establishment. In any event, the exporting status is only used as a control variable in the regression,
capturing the potential correlation with a plant’s heterogeneous unobservable productivity.
14 In the Supplementary Appendix, Table SA2 provides mean values for plant characteristics by firm structure with time-invariant multi-plant status. This
indicator is defined as the first-year status that a plant is affiliated with a multi-plant firm.



Table 3
Mean value for plant characteristics by firm structure.

Variable Multi-plant Single plant

Any Reg ¼ 0 Any Reg ¼ 1 Any Reg ¼ 0 Any Reg ¼ 1

Observations 338,069 989,772 59,705 222,123
Deflated sales 21163.99 19969.66 12240.79 10155.31
Employment 171.26 163.70 92.68 80.00
Sales per labor 124.81 132.20 141.68 145.20
Age 7.24 6.43 7.85 6.70
Death 0.051 0.055 0.018 0.017
Birth 0.050 0.050 0.042 0.038
Takeover 0.445 0.434 0.593 0.545
Export status 0.171 0.173 0.268 0.268
Foreign ownership 0.166 0.171 0.101 0.085
Multi-industry 3.475 3.492 1.000 1.000
NL
ijct 1.742 1.884 1.000 1.000

NN
ijct 0.560 0.720 0.000 0.000

NW
ijct 40.104 34.371 0.000 0.000

NRN
ijct 0.208 0.649 0.000 0.000

NUN
ijct 0.352 0.071 0.000 0.000

NRW
ijct 27.742 24.896 0.000 0.000

NUW
ijct 12.361 9.476 0.000 0.000

Note: see text for all variable definitions.
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To further investigate plant death rates by multi-plant status and environmental exposure, we compute average plant
death rate at county-level bymulti-plant status for each year. For each county-year pair, death rate is computed as the number
of plant deaths divided by the number of existing plants acrossmulti-plant status. Then, for each year, we take themean value
of county-level death rates by nonattainment status. Fig. 4 shows that, regardless of environmental pressures, multi-plant
firms have much higher death rates than single-plant firms over our study period of 1990e2007. When it comes to regu-
latory exposure, death rates of plants located in nonattainment and attainment counties follow a similar pattern. Moreover,
plants located in nonattainment counties have modestly higher death rates than those residing in attainment counties across
years.

4. Empirical models

We seek to examine whether, in response to local stringent environmental controls, multi-plant firms are more or less
likely to close an affiliated plant in regulated counties than single-plant firms. Also, among multi-plant firms, we are inter-
ested in identifying the heterogeneous effects of the firm’s internal network characteristics on closure decisions of affiliated
dirty plants that are exposed to environmental pressures. Moreover, we investigate how the structure of firms’ internal
network in terms of exposure to environmental pressures, affects the shutdown decisions of dirty plants relative to clean
plants in response to tightened local regulatory controls.

To identify the heterogeneous effects of CAAA regulation on plant closure decisions, we estimate a series of probit models
that represent the probability of plant death. The general structure of these probit models can be represented as follows:

ProbðDeathitÞ¼F
�
Xitbþ ZitqþLcjt

�
(1)
The outcome indicator variable Deathit was defined earlier, andFð , Þ denotes the cumulative distribution function of the
normal distribution. As noted earlier, i indexes a plant, j indicates the industry of said plant, c is the county where the plant is
located, and t denotes the observation year. In equation (1), Xit is a vector of regulatory and network variables that wewish to
single out in our analysis, Zit is a vector of other explanatory and control variables (including plant characteristics), andLcjt is a
vector of fixed effects that control for county, industry, and time factors common to all plants within the same county (such as
county-level regulation, the measure of agglomeration economies, and industry-by-county wage rate). The various models
considered below have the structure of equation (1) and differ in the details of the specification of the term Xitb.

4.1. Multi-plant vs. single-plant death

We explore the role of firms’ internal networks in determining plants’ responses to stringent environmental regulations,
controlling for plant, county, and industry characteristics. We test whether a multi-plant firm, in response to tightened
environmental controls, is more or less likely to shut down its affiliated plants than a single-plant firm. Moreover, we
distinguish firms’ internal network effects with local agglomeration by utilizing the variables discussed earlier. We also
consider how plant attributes, including size, age, labor productivity, and other characteristics, are related to their likelihood



Table 4
Dirty Industry List. Note: this industry classification is based on Greenstone (2002).

Industry (SIC codes) SO2 CO O3 TSPs

Pulp and paper (2611-31) Y Y Y Y
Organic chemicals (2861-69) Y
Petroleum refining (2911) Y Y Y
Rubber and miscellaneous plastic products (30) Y
Stone, clay, glass and concrete (32) Y Y Y
Iron and steels (3312-25, 2231-2) Y
Nonferrous metals (333-34) Y Y
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of shutting down. The county-level characteristics are also included to control for confounding factors affecting the closure
decisions of plants.

To tease out the regulatory impact on closure decisions of dirty plants, we further define dirty plants as those in a dirty
industry (i.e., industries that are known to be heavy emitters of criteria air emissions). Whereas existing research adopts
alternative proxies for emitters’ regulatory exposure (Becker, 2005; Morgan and Condliffe, 2009; Walker, 2011, 2013), the
classification of dirty industry employed in this article is pollutant-specific and based on Greenstone (2002), and described in
Table 4.15 We denote Dirtyj as a dirty industry indicator if the industry is classified as heavy emitters of any criteria air
pollutants in the list of SO2, CO, O3, and TSPs. The structural part of the probit model for this analysis can be represented as

Xitb≡ b11Dirtyj � Regct�1 �Multiit�1 (2)
Note that because the EPA determination of nonattainment status is made in July of any given year, our presumption is that
the shutdown probability in year t is related to the status in place at the beginning of the year (which was determined in July
of year t� 1). The parameter of interest b11, is the coefficient for the interaction term among the dirty industry indicator
Dirtyj, the regulation variable Regct , and multi-plant ownership dummy Multiit. This parameter captures the heterogeneous
regulatory impacts on multi-plant closure decisions of a dirty plant relative to those with single-plant firms, controlling for
local agglomeration effects and county and industry characteristics.

4.2. Firm internal network

As sketched in a heuristic map in Fig. 3, plants affiliated with the same parent company are located across counties; and
hence, in principle, are subject to variations in local environmental pressures.When considering the possibility of reallocating
resources from plants in regulated counties to affiliated plants in unregulated counties, reallocation costs may vary with the
distance between the regulated plant and its affiliated plants. The distribution of sibling plants in different regional levels may
have different impacts on the probability of shutting down a plant in regulated counties and reallocating its production
resources to avoid regulatory compliance. As noted, we consider three regional measures for firms’ internal network (local,
neighborhood, and the wider area).

For each of the three regional network measures, we examine the firm’s internal network effect on closure decisions for
affiliated dirty plants located in nonattainment counties by interacting the regional network variables with the county
regulatory control variable and dirty industry indicator. The county regulatory controls and firm internal network measures
are implemented in one-year lagged fashion, allowing relocation decisions for dirty plants in the current year to respond to
the stringent local environmental regulation in the past year. Because a firm may have plants located in local, neighborhood,
and wider areas, their joint network effects may influence site choices of affiliated dirty plants in regulated counties. We add
all three network effects and their interaction terms into one specification by representing the structural part of the probit
model as follows:

Xitb≡b21Dirtyj � Regct�1 � LocalNetijct�1 þ b22Dirtyj � Regct�1 � NbrNetijct�1
þb23Dirtyj � Regct�1 �WideNetijct�1

(3)
The coefficients of interest, ðb21; b22; b23Þ, measure the effects of different regional networks by comparing location re-
sponses of dirty plants with those of clean plants when both types of plants are located in counties with strict environmental
regulations. One may expect that ðb21 sb22 sb23Þ, indicating the heterogeneous regional firm internal network effects on
closure choices of dirty plants relative to clean plants in response to local regulatory compliance.
15 Becker (2005) defines pollution-intensive sectors based upon data from the EPA’s Aerometric Information Retrieval System database. An industry is
labelled as a heavy emitter of one of the six criteria air pollutants if it has a minimum number of plants above the pollution threshold set by the EPA (5 tons
per year for lead, 1000 tons per year for CO, and 100 tons per year for the remaining criterial air pollutants). Walker (2011, 2013) employ a plant-level
regulatory status if the plant has an operating permit in the EPA’s Air Facility Subsystem database and is located in a county that is subject to non-
attainment status for the specific pollutant on the permit.



Fig. 3. Heuristic Map of Affiliated Plants. (Note: the upper chart depicts the location of some affiliated plants; the lower chart depicts the firm internal
neighborhood network by exposure to regulation in terms of nonattainment designations.)

J. Cui, G. Moschini / Journal of Environmental Economics and Management 101 (2020) 10231912
Next, consider a plant i that is located in a nonattainment county c, as depicted in the lower panel of Fig. 3. To avoid
environmental compliance, the parent company of plant i may consider shutting it down. The probability of shutting down
plant i may be influenced by the number of affiliated plants located in counties that share borders with county cdin
particular, the number of affiliated plants located in unregulated neighboring counties. Thus, we consider a variant specifi-
cation with the joint effects of different regional networks varying with exposure to regulations, as follows,

Xitb≡b31Dirtyj � Regct�1 � RegNbrNetijct�1 þ b32Dirtyj � Regct�1 � UnregNbrNetijct�1
þb33Dirtyj � Regct�1 � RegWideNetijct�1 þ b34Dirtyj � Regct�1 � UnregWideNetijct�1

(4)
The coefficients ðb31; b32; b33; b34Þ capture how the regional firm’s internal network in regulated and unregulated counties
would affect the shutdown probability of an affiliated dirty plant relative to that of a sibling clean plant, both of which are
located in the same regulated county c. One may expect that ðb31 sb32 sb33 sb34Þ, suggesting the different effects of
regional network by the variations in environmental exposure. Moreover, one may expect ðb32 >b34 >0Þ, indicating that the
regional network in unregulated counties provides a potential channel of reallocating resources from dirty plants in regulated
counties to sibling plants in nearby unregulated counties. In addition, the effects of regional firms’ internal networks on plant
death declines as the distance of the network to the regulated plant rises. The signs of ðb31;b33Þ, however, are ambiguous,
because resource reallocation from one dirty plant in a regulated county to its siblings in other regulated counties would not
help the firm escape from environmental compliance.



Fig. 4. Average County-level Plant Death Rate by Multi-Plant Status, 1990e2007. (Note: death rate is computed as the number of death plants divided by the
number of existing plants by multi-plant status. Nonattainment is set for any criteria pollutants.)
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5. Results

We start by presenting results on whether multi-plant firms are more likely to close a plant than single-plant firms in
response to local environmental regulatory control. We then show how regional firms’ internal networks are involved in
affecting closure decisions of dirty plants in relation to clean plants. The effects of regional firms’ internal network interacting
with exposure to environmental pressures on plant death are presented. A series of robustness checks on model specifica-
tions, sample, and alternative measures for firms’ internal networks are considered.

5.1. Multi-plant vs. single-plant death

Table 5 reports estimation results for the multivariate probit models of plant death conditional on plant and county
characteristics. Columns (1) and (2) are based on the full sample, but vary with the choices of the triple interaction among
dirty industry indicator, county environmental regulation, and multi-plant status. Columns (3) and (4) examine the sub-
samples for multi-plant and single-plant firms only, respectively, whereas the remaining columns investigate the sub-
samples for dirty sector and clean sector only, respectively. In all columns, standard errors clustered at county level are re-
ported in parentheses, and industry is measured by the three-digit SIC.16

The results strongly support the hypothesis that plants’ shutdown decisions are positively associated with multi-plant
status. Specifically, we find positive and statistically significant coefficients for multi-plant affiliation status in all columns
of Table 5. These estimates consistently suggest that being affiliated with multi-plant firms significantly increases the
probability of plant death, conditional on plant attributes and county characteristics. This result matches findings by Bernard
and Jensen (2007), who also conclude that multi-plant firms have greater chances of closing a plant relative to single-plant
firms, conditional on plant and county characteristics.

Moreover, we are interested in the effects of environmental regulations on plant deaths. When splitting the data into sub-
sample by multi-plant status, as shown in columns (3) and (4) of Table 5, there are positive coefficients for the regulatory
control. This positive coefficient is statistically significant at the 5% level for the multi-plant sub-sample, while it is not
statistically significant at any conventional levels for the single-plant sub-sample. The environmental controls have signifi-
cant impacts on the closure probability of plants affiliated withmulti-plant firms, but not with single-plant firms. The focus of
this article is on the heterogeneous responses between multi-plant and single-plant firms when both groups are subject to
local regulatory controls. This heterogeneous environmental response is captured by the coefficient for the interaction term
between multi-plant status and regulatory measure. In most columns with full sample, this coefficient is positive and sta-
tistically significant at the 5% level. Controlling for plant attributes and county characteristics, we find substantial differences
in plant closure decisions in response to stringent regulations between multi-plant and single-plant firms. For plants located
16 Alternative standard errors clustered at industry, county, and headquarters level are considered, but do not alter our main conclusions.



Table 5
Baseline results, probit models for plant death.

VARIABLES All sample Multi-plant Single-plant Dirty Sector Clean Sector

(1) (2) (3) (4) (5) (6)

Multi 0.0214***
(0.0011)

0.3414***
(0.0234)

0.3462***
(0.0238)

0.3495***
(0.0242)

Regct�1 �0.0019
(0.0016)

�0.0326
(0.0261)

0.0014**
(0.0006)

0.0006
(0.0006)

�0.0762***
(0.0264)

�0.0201
(0.0269)

Regct�1 � Multi 0.0034**
(0.0016)

0.0499*
(0.0268)

0.0820***
(0.0264)

0.0458*
(0.0269)

Dirty �0.1294***
(0.0501)

Dirty � Multi 0.0117
(0.0322)

Regct�1 � Dirty �0.0355
(0.0361)

Regct�1 � Dirty � Multi 0.0305
(0.0375)

Size �0.0023***
(0.0001)

�0.0203***
(0.0014)

�0.0029***
(0.0001)

�0.0005***
(0.0002)

�0.0165***
(0.0017)

�0.0274***
(0.0022)

Labor productivity �0.0061***
(0.0005)

�0.0691***
(0.0059)

�0.0069***
(0.0006)

�0.0029***
(0.0004)

�0.0759***
(0.0077)

�0.0536***
(0.0092)

Age �0.0084***
(0.0003)

�0.0176***
(0.0006)

�0.0106***
(0.0003)

�0.0012**
(0.0005)

�0.0172***
(0.0008)

�0.0183***
(0.0010)

Export Status �0.0166***
(0.0004)

�0.2141***
(0.0067)

�0.0222***
(0.0005)

�0.0022***
(0.0006)

�0.2145***
(0.0084)

�0.2157***
(0.0110)

Foreign Ownership �0.0070***
(0.0005)

�0.0771***
(0.0067)

�0.0077***
(0.0006)

�0.0029***
(0.0008)

�0.0596***
(0.0084)

�0.1052***
(0.0109)

Takeover 0.0060***
(0.0004)

0.0544***
(0.0049)

0.0076***
(0.0005)

0.0026***
(0.0005)

0.0566***
(0.0064)

0.0500***
(0.0078)

Distance to Hdq 0.0036***
(0.0001)

0.0320***
(0.0010)

0.0042***
(0.0001)

0.0324***
(0.0013)

0.0320***
(0.0016)

Multi-industry 0.0012***
(0.0001)

0.0159***
(0.0009)

0.0014***
(0.0001)

0.0179***
(0.0011)

0.0127***
(0.0014)

LocalNetijct 0.0136***
(0.0005)

0.0282***
(0.0106)

0.0161***
(0.0006)

0.0376***
(0.0139)

0.0146
(0.0166)

Agglomeration 0.0024***
(0.0007)

0.0047
(0.0231)

0.0033***
(0.0009)

�0.0007
(0.0010)

�0.0214
(0.0300)

0.0481
(0.0364)

Property tax �0.0011
(0.0018)

0.0229**
(0.0109)

�0.0019
(0.0022)

0.0012
(0.0026)

0.0314**
(0.0143)

0.0093
(0.0172)

Income per capita 0.0025***
(0.0008)

0.0223***
(0.0055)

0.0034***
(0.0010)

�0.0011
(0.0011)

0.0231***
(0.0072)

0.0191**
(0.0087)

Road density 0.0018***
(0.0004)

0.0056***
(0.0017)

0.0021***
(0.0006)

0.0009
(0.0006)

0.0042*
(0.0022)

0.0080***
(0.0028)

Unemployment rate 0.0007***
(0.0001)

0.0382**
(0.0170)

0.0009***
(0.0002)

0.0002
(0.0002)

0.0569**
(0.0226)

0.0108
(0.0260)

Industry-county wage 0.0044***
(0.0012)

�0.3590
(0.3048)

0.0052***
(0.0015)

0.0004
(0.0017)

�0.4594
(0.3862)

�0.6249
(0.5194)

Industry sunk costs 0.0095
(0.0241)

�0.0203***
(0.0014)

�0.0073
(0.0299)

0.0592*
(0.0313)

�0.0165***
(0.0017)

�0.0274***
(0.0022)

Observations 1,181,595 957,932 971,754 243,273 550,042 407,890
Pseudo R-squared 0.0465 0.0455 0.0313 0.0386 0.0447 0.0465

Year FE Y Y Y Y Y Y
Industry FE Y Y Y Y Y Y
State FE Y Y Y Y Y Y

Note: Dependent variable is a binary indicator of plant death. The coefficients give the marginal effect of changing the independent variable estimated from
probit models. See Table 2 and the text for variable definitions. All control variables, except indicator variables, are in logs. Standard errors presented in the
parentheses are clustered at county level. Industry dummies are calculated at the three-digit SIC level. *** significant at 1% level, ** significant at 5% level, *
significant at 10% level.
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in nonattainment counties, and hence encountering environmental compliance, a plant that is part of a multi-plant firm has a
higher shutdown probability than a comparable single-plant firm. This finding suggests that, conditional on both plant-level
and county-level characteristics, in compliance with strict controls, multi-plant firms are more likely to use the plant closure
margin to deal with environmental compliance.



Table 6
Regional firm internal network effect on plant death.

VARIABLES (1) (2) (3) (4)

Dirtyj � Regct�1 � LocalNetijct�1 0.0130
(0.0314)

�0.0080
(0.0330)

Dirtyj � Regct�1 � NbrNetijct�1 0.0450**
(0.0224)

0.0469*
(0.0240)

Dirtyj � Regct�1 � WideNetijct�1 0.0044
(0.0064)

0.0013
(0.0067)

Observations 971,754 971,754 971,754 971,754
Pseudo R-squared 0.0341 0.0341 0.0341 0.0341
Plant Control Y Y Y Y
Year FE Y Y Y Y
3SIC-Industry Trend Y Y Y Y
State Trend Y Y Y Y

Note: Dependent variable is a binary indicator of plant death. All controls and fixed effects in the baseline reported in Table 5 are included. Dirty is a dirty
industry dummy for any criteria air pollutants. See text for all variable definitions. Standard errors presented in the parentheses are clustered at county level.
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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We further explore whether multi-plant firms are more likely to close a dirty plant (relative to clean one) than are single-
plant firms in response to local environmental compliance.17 In column (2) of Table with all sample observations, the esti-
mated coefficient of the interaction term between regulatory and multi-plant status is positive and statistically significant at
the 10% level. When it comes to the estimated coefficient for the triple interaction term, the coefficient is positive but not
statistically significant at any conventional level. When further splitting the sample into dirty sectors and clean sectors, as
reported in columns (5) and (6) of Table 5, both estimated coefficients for the interaction term between county regulatory
measure and multi-plant status are positive and statistically significant. In terms of magnitude, the estimated effect is more
pronounced for plants in dirty sectors than plants in clean ones.

The effects of the firm’s internal network on plant death are examined next. We consider two alternative measures: the
(log) distance of a plant to its headquarters, and the (log) number of affiliated plants located in the same county and in the
same industry at time t. There are consistently positive and statistically significant coefficients for these two variables across
all columns in Table 5. When a plant is located further away from its parent company, it is more likely to be shut down, as
suggested by the positive and statistically significant coefficient for the distance variable. In addition, we find strong evidence
supporting the positive effect of firms’ internal networks on plant death. The larger the number of a firm’s affiliated plants in
the same county, the higher probability an affiliated plant would be closed. We also add a control for the number of industries
that a firm’s headquarters are involved with. This coefficient is consistently positive and statistically significant at the 1% level
in all specifications. Hence, we find that the higher the number of sub-sectors inwhich the headquarters have affiliated plants,
the higher the chance an affiliated plant will be closed.

When closely inspecting the relationship between plant attributes and closure likelihood, we find negative and statisti-
cally significant coefficients for plant size, labor productivity, and age, indicating that the probability of plant closure sub-
stantially decreases with these plant attributes. This result implies that headquarters are more likely to shut down low-
productivity and small-size plants, and that older plants are more resilient to exiting pressure. We next consider whether
exporters or multinational firms are related to the probability of plant closure. As expected, the negative and statistically
significant coefficient shows that exporting plants have lower probability of exit (by roughly 1.6 percentage points). This
result is consistent with predictions arising from the new-new trade theory with heterogeneous firms (e.g., Melitz, 2003),
showing that exporters are less likely to exit the domestic market than their competing non-exporters. The effect of foreign
ownership shows that plants owned by foreign firms are less likely to be closed.

We further examine the effects of changes in plant ownership on plant death. As shown by the coefficient for the takeoverit
variable, plants experiencing changes in ownership have higher shutdown probability. This positive coefficient is statistically
significant at the 1% level for all specifications in Table 5. The negative effect of the ownership changes on plant closure
probability is about two percentage points. One possible explanation for this effect is that plants that have changed their
ownerships are those that may behave poorly in the first place, and hence are vulnerable to negative economic shocks.

When it comes to the effects of county characteristics on plants’ shutdown likelihood, the results vary with the level of
fixed effects included in the specification. When state or industry fixed effects are present, the coefficient for local
agglomeration variable is positive and statistically significant at the 1% level, while the coefficient for local income is positive,
but not significant at any conventional levels. This piece of evidence suggests that the agglomeration effect raises plant death
probability through competition in local markets. Property tax and industry county wage rate are measures for production
17 As noted by an anonymous reviewer, by construction our data merging procedure brings into the sample sibling plants for multi-plant firms but not for
single-plant firms. As a result, the final sample may not be fully representative of plants in the NEI. A limitation of this procedure is that the estimated
heterogeneous decisions of dirty plant shutdown, relative to clean ones, across the multi-plant status may be overestimated. In addition, it is not possible to
isolate the effect of ownership status per se, as the heterogeneous effects could be the consequence of differences in other dimensions, such as productivity.



Table 7
Regional firm internal network effect by exposure to regulation.

VARIABLES Whole period of 1990e2007

(1) (2) (3)

Dirtyj � Regct�1 � RegNbrNetijct�1 0.0024
(0.0297)

0.0134
(0.0298)

Dirtyj � Regct�1 � UnregNbrNetijct�1 0.0909**
(0.0359)

0.0999***
(0.0366)

Dirtyj � Regct�1 � RegWideNetijct�1 �0.0279***
(0.0089)

�0.0274***
(0.0090)

Dirtyj � Regct�1 � UnregWideNetijct�1 0.0142
(0.0102)

0.0119
(0.0101)

Observations 971,754 971,754 971,754
Pseudo R-squared 0.0341 0.0342 0.0343

Plant Control Y Y Y
Year FE Y Y Y
3SIC-Industry Trend Y Y Y
State Trend Y Y Y

Note: Dependent variable is a binary indicator of plant death. All controls and fixed effects in the baseline reported in Table 5are included. See text for all
variable definitions. Standard errors presented in the parentheses are clustered at county level. *** significant at 1% level, ** significant at 5% level, *
significant at 10% level.
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costs. The estimated coefficients for these two county-level controls are positive and statistically significant at the 1% level.
This result implies that higher property tax andwage rates raise plants’ production costs, thereby increasing the probability of
death. Similarly, both the county-level unemployment rate and road density also display positive coefficients with statistical
significance at the 1% level. The former result suggests that local unemployment rates lead to plant closure probability, while
the latter indicates that local infrastructure (perhaps surprisingly) contributes to the exit of plants. Lastly, the industry sunk
costs, measured by the entry-exit rates as in Bernard and Jensen (2007), have negative coefficients. When the industry fixed
effects are controlled to absorb the industry-level confounding unobservable, the coefficient for the industry sunk cost does
not have statistical significance at any conventional levels, lending little support on the impacts of entry costs on plant exit.

5.2. Regional firm internal network effects

Table 6 reports the estimated probit models for specification (3). All controls listed in column 5 of Table 5 are included, but
their coefficients are not reported in this table to save space. All columns also include a set of year fixed effect, three-digit SIC
industry linear trends and state linear trends. Standard errors are clustered at the county level.

For all three regional networksdlocal (LocalNetijct�1), neighborhood (NbrNetijct�1), and wider area (WideNetijct�1)dwe
document consistently positive impacts of regional networks interacting with the dirty industry dummy and county regu-
lation on plant death, as shown in columns 1e3 of Table 6. Among all three estimated regional network effects, the neigh-
borhood network has the largest positive effect, which is statistically significant at the 5% level. Local and wider-area network
effects, on the other hand, are not statistically significant at conventional levels. The results are essentially unchanged when
all three regional network effects are considered simultaneously, as presented in column 4 of Table 6. The effect that stands
out is that associated with the neighborhood network. Conditional on plant-level and county-level characteristics, the
presence of sibling plants in neighboring counties increases the probability of a dirty plant being shut down in a regulated
county. The local network does not exhibit the same effect: shifting resources between plants that are subject to the same
regulatory pressure does not help the firm’s environmental compliance strategy.

5.3. Firm internal network effects by environmental pressures

We further split neighborhood and wider-area networks into those in regulated areas and unregulated areas. Table 7
provides the estimated probit models for plant death based on specification (4). In column 1 of Table 7, we document a
positive coefficient of the interaction term among the dirty industry dummy, county regulation indicator, and neighbor
network in regulated counties. This positive effect is statistically significant at the 5% level, indicating that as more affiliated
plants are located in neighboring counties without environmental pressures, a parent company would be more likely to close
a dirty plant in the regulated county to deal with environmental compliance. Conversely, we find little evidence of a regulated
neighbor network effect. When there are some sibling plants residing in neighboring counties also with environmental
pressures, then these plants are also exposed to environmental controls and thus are not attractive for the purpose of
reallocating production resources in order to lessen the cost of environmental compliance.

As the firm’s internal network moves to the circle outside of neighboring counties, the impact of the regional network on
plant closure is weakened. Column 2 of Table 7 shows a positive (but insignificant) coefficient for the wider network in
unregulated areas, and a negative coefficient for the wider network in regulated areas. The latter is significant at the 1% level.
Affiliated plants in unregulated areas that are located further away from dirty plants in regulated counties have a weak or no



Table 8
Marginal effects, probit models for plant death.

VARIABLES Whole sample period Post-CAAA period of 1990e1999 New standard period of 2000e2007

(1) (2) (3) (4) (5)

Dirtyj � Regct�1 � RegNbrNetijct�1 0.0002
(0.0029)

0.0014
(0.0029)

0.0012
(0.0045)

0.0022
(0.0042)

Dirtyj � Regct�1 � UnregNbrNetijct�1 0.0094***
(0.0034)

0.0103***
(0.0034)

0.0106*
(0.0062)

0.0111**
(0.0047)

Dirtyj � Regct�1 � RegWideNetijct�1 �0.0029***
(0.0009)

�0.0028***
(0.0009)

�0.0032***
(0.0011)

�0.0021
(0.0015)

Dirtyj � Regct�1 � UnregWideNetijct�1 0.0015
(0.0010)

0.0012
(0.0010)

0.0021
(0.0014)

0.0001
(0.0017)

Observations 971,754 971,754 971,754 499,887 471,867
Pseudo R-squared 0.0341 0.0342 0.0343 0.0441 0.0307
Plant Control Y Y Y Y Y
Year FE Y Y Y Y Y
3SIC-Industry Trend Y Y Y Y Y
State Trend Y Y Y Y Y

Note: Dependent variable is a binary indicator of death. For each column, the coefficients give the marginal effect of changing the independent variable
estimated from probit models. All controls and fixed effects in the baseline reported in Table 5 are added, but are not reported in this table due to limited
space. See text for all variable definitions. Standard errors presented in the parenthesis are clustered at county level. *** significant at 1% level, ** significant
at 5% level, * significant at 10% level.
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impact on closure decisions. Conversely, when the firm also faces environmental pressure in the wider area, then this reduces
the odds of plant closure in a given regulated county (the associated coefficient in Table 7 is negative and statistically sig-
nificant). The coefficients for the specification that includes both neighborhood and wider area networks are reported in
column 3 of Table 7. The results are essentially the same as in columns 1 and 2.

Table 8 provides the estimated results for the marginal effects of the firm’s regional internal network varying with the
exposure to environmental regulation.18 As noted by a reviewer, it is important to stress that these marginal effects are
calculated at the average values of the covariates across both the single and multi-plant firms, hence they do not necessarily
represent the marginal effect for each type. In columns (1)e(3) of Table 8, the marginal effects of the firm’s neighbor network
in unregulated counties on the closure decision of a dirty plant in a regulated county are positive and statistically significant at
the 1% level. When splitting the sample into two periods (the post-CAAA and new standard periods), these positive marginal
effects still hold. Using the alternative measure of the firm’s regional internal network by summing up the number of laborers
across affiliated plants, in the Supplementary Appendix, Table SA3 provides the estimated marginal effects of probit models
on plant death. The main conclusion still holds.
5.4. Robustness

To check the robustness of our results, we re-conduct regression analysis based upon specification (4), while considering
different sample periods, pollutant-specific nonattainment designations, an alternative model specification with more
controls of fixed effects, and placebo tests regarding the pseudo assignments of multi-plant status.

5.4.1. Sample period
Fig. 1 depicts the number of counties per year from 1978 to 2014 with changed nonattainment/attainment designations.

During the sample period of 1990e2007, a substantial number of counties changed designation status during the early 1990s
and themid-2000s. The former is due to the post-CAAA period, while the latter is because of newand strict standards for TSPs
and ground-level O3 implemented around 2004. Thus, we split thewhole sample period into two parts: the post-CAAA period
of 1990e1999 and the new standard period of 2000e2007. For each restricted sample period, we re-conduct the probit model
in specification (3). Table 9 reports the corresponding results. In the post-CAAA period, as shown in columns 1e3 of Table 9,
the positive effect of firms’ internal networks on plant death in unregulated neighboring counties remains statistically sig-
nificant at the 10% level. During this period, in response to local regulatory control, headquarters are more likely to close dirty
plants and shift production to other affiliated plants in the nearby neighboring counties, which are free from environmental
regulations. Moreover, a negative and statistically significant coefficient for firms’ internal network in wider areas without
environmental pressures is again found. With more siblings in regulated areas further away from the focal dirty plant, the
likelihood of shutting down in response to local environmental compliance declines.

In the new standard period, as shown in columns 4e6 of Table 9, coefficients of neighbor network in unregulated counties
are positive and statistically significant at the 5% level, lending support to the conclusion that the unregulated neighbor
18 Existing econometric work has discussed the differences in marginal effects between linear and non-linear models (Ai and Norton, 2003; Greene, 2010).



Table 9
Robustness checks e sample periods.

VARIABLES Post-CAAA period of 1990e1999 New standard period of 2000e2007

(1) (2) (3) (4) (5) (6)

Dirtyj � Regct�1 � RegNbrNetijct�1 �0.0005
(0.0473)

0.0126
(0.0474)

0.0103
(0.0377)

0.0198
(0.0381)

Dirtyj � Regct�1 � UnregNbrNetijct�1 0.1103*
(0.0643)

0.1123*
(0.0649)

0.0890**
(0.0427)

0.1011**
(0.0434)

Dirtyj � Regct�1 � RegWideNetijct�1 �0.0359***
(0.0117)

�0.0340***
(0.0118)

�0.0172
(0.0138)

�0.0189
(0.0140)

Dirtyj � Regct�1 � UnregWideNetijct�1 0.0221
(0.0143)

0.0223
(0.0144)

0.0051
(0.0157)

0.0014
(0.0156)

Observations 499,887 499,887 499,887 471,867 471,867 471,867
Pseudo R-squared 0.0438 0.0440 0.0441 0.0306 0.0307 0.0307

Plant Control Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
3SIC-Industry Trend Y Y Y Y Y Y
State Trend Y Y Y Y Y Y

Note: Dependent variable is a binary indicator of plant death. All controls and fixed effects in the baseline reported in Table 5 are included. Dirty is a dirty
industry dummy for any criteria air pollutants. See text for all variable definitions. Standard errors presented in the parenthesis are clustered at county level.
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.

Table 10
Robustness check e pollutant-specific dirty emitter.

VARIABLES Whole sample period

SO2 CO O3 TSPs

Dirtyp � Regcpt�1 � RegNbrNetijct�1 �0.0260
(0.0734)

�0.0693
(0.0615)

0.0154
(0.0181)

�0.0686**
(0.0297)

Dirtyp � Regcpt�1 � UnregNbrNetijct�1 �0.0744
(0.1073)

0.4043*
(0.2113)

0.1570***
(0.0555)

0.0447
(0.1177)

Dirtyp � Regcpt�1 � RegWideNetijct�1 �0.0645
(0.0411)

0.0185
(0.0346)

�0.0272***
(0.0097)

�0.0063
(0.0218)

Dirtyp � Regcpt�1 � UnregWideNetijct�1 0.0872*
(0.0469)

�0.0435
(0.0396)

0.0105
(0.0112)

0.0136
(0.0256)

Observations 971,754 971,754 971,754 971,754
Pseudo R-squared 0.0343 0.0342 0.0342 0.0342

Plant Control Y Y Y Y
Year FE Y Y Y Y
3SIC-Industry Trend Y Y Y Y
State Trend Y Y Y Y

Note: Dependent variable is a binary indicator of plant death. All controls and fixed effects in the baseline reported in Table 5 are included. Dirty is a dirty
industry dummy for any criteria air pollutants. See text for all variable definitions. Standard errors presented in the parentheses are clustered at county level.
*** significant at 1% level, ** significant at 5% level, * significant at 10% level.
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network does impact plant death. There is little evidence on the negative effects of the wider network in regulated areas on
closure decisions of dirty plants.

5.4.2. Pollutant-specific regulation
Fig. 2 depicts the number of counties with changed designation status for each criteria air pollutant under the CAAA. The

pattern varies with pollutant. The changes of SO2-specific status mainly occur in the later 1970s, and are stable during the
sample period of 1990e2007. For CO, there exist substantial changes in designations during the post-CAAA period of
1990e2002. For O3 and TSPs, variations in designations mainly appear in the early 1990s and mid-2000s.

We consider a pollutant-specific regulation and pollutant-specific dirty industry indicator. Let Dirtyp be pollutant-p-
specific dirty industry dummies, following Greenstone (2002). Let Regcpt�1 denote pollutant-p-specific county nonattain-
ment status at t-1. For each pollutant p2 {SO2, CO, O3, TSPs}, the following variant specification is considered:

Xitb≡b41Dirtyp � Regcpt�1 � RegNbrNetijct�1 þ b42Dirtyp � Regcpt�1 � UnregNbrNetijct�1
þb43Dirtyp � Regcpt�1 � RegWideNetijct�1 þ b44Dirtyp � Regcpt�1 � UnregWideNetijct�1

(5)

where the firm’s internal network variables are defined as before.
Table 10 reports the probit model estimates on plant death during the whole sample period of 1998e2007. Columns vary

with pollutant type. In response to SO2-specific regulation, the wider network in unregulated areas raises the shutdown



Table 11
Linear probability model for plant death.

VARIABLES Whole sample period

(1) (2) (3) (4) (5) (6)

Dirtyj � Regct�1 � RegNbrNetijct�1 0.0001
(0.0029)

0.0015
(0.0046)

0.0014
(0.0030)

0.0032
(0.0047)

Dirtyj � Regct�1 � UnregNbrNetijct�1 0.0098***
(0.0036)

0.0096*
(0.0052)

0.0110***
(0.0037)

0.0114**
(0.0053)

Dirtyj � Regct�1 � RegWideNetijct�1 �0.0029***
(0.0010)

0.0009
(0.0015)

�0.0029***
(0.0010)

�0.0022**
(0.0010)

Dirtyj � Regct�1 � UnregWideNetijct�1 0.0014
(0.0011)

�0.0035**
(0.0016)

0.0012
(0.0011)

�0.0027
(0.0047)

Observations 1,021,884 1,021,884 1,021,884 1,021,884 1,021,884 1,021,884
Adjusted R-squared 0.0165 0.2528 0.0166 0.2528 0.0166 0.2528

Plant Control Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
3SIC-Industry Trend Y Y Y Y Y Y
State Trend Y Y Y Y Y Y
County FE Y Y Y
Plant FE Y Y Y

Note: Dependent variable is a binary indicator of plant death. OLS regressions are employed. All controls and fixed effects in the baseline reported in Table 5
are included. See text for all variable definitions. Standard errors presented in the parentheses are clustered at county level. *** significant at 1% level, **
significant at 5% level, * significant at 10% level.
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probability of dirty plants relative to that of clean plants. This corresponding network effect in unregulated neighboring
counties is negative but statistically not significant. When it comes to CO- and O3-specific nonattainment designations, we
find positive coefficients for the network in unregulated neighboring counties. These positive estimates are statistically
significant at the 10% level for CO and the 1% level for O3. This finding suggests that dirty polluters may respond to regulations
by shifting resources to other affiliated plants in the unregulated neighboring counties and then closing dirty plants that are
subject to CO- or O3-specific regulatory controls. For the wide area network in regulated areas, the effect is negative and
statistically significant for O3-specific nonattainment regulation. Lastly, for TSPs the significant effect that emerges concerns
the regulated neighboring counties: the presence of sibling plants in such counties actually reduces the shutdown probability
of a dirty plant facing regulatory pressure.

5.4.3. Alternative model specifications
Instead of the probit model, here we estimate a linear probability model of plant death using ordinary least square (OLS)

regressions that include additional fixed effects (for the county or for the plant). By controlling for unobserved county or plant
heterogeneity, this alternative model specification further helps tease out the causal effects for the role of the firm internal
network on closure decisions of dirty plants in response to local tough environmental controls. Table 11 presents the OLS
results of the triple interaction terms among the dirty industry dummy, one-year lagged county regulation, and one-year
lagged firm internal network.19

Controlling for county or plant fixed effects, the estimated coefficients for the triple interaction of firm internal network in
unregulated neighboring counties are positive and statistically significant, while the estimated coefficient for the triple
interaction of firm internal network in regulated non-neighboring counties are negative and statistically significant in most
cases. These OLS estimates are therefore largely consistent with those reported for the probit models.

5.4.4. Placebo test
To provide further robustness checks regarding the stability of our main conclusions, we conduct additional placebo tests

regarding the pseudo assignments of multi-plant status. Specifically, we randomly assign the multi-plant status between a
plant and a headquarters to match the fraction of plants affiliated with multi-plant firms with the sample observation. For
each pseudo affiliated plant, we then measure the regional firms internal network by summing up the number of pseudo-
affiliated plants across different regions, such as, the pseudo local network PseudoLocalNetijct�1, the pseudo neighborhood
network PseudoNbrNetijct�1, and the pseudo wider-area network PseudoWideNetijct�1. Using these pseudo regional network
measures, a variant of the baseline equation (3) in the text is proposed to examine the impact of the pseudo internal network
on plant death,
19 In the Supplementary Appendix, we also consider OLS regressions that account for year, state trend, industry trend, and headquarters fixed effects, but
without plant fixed effect. The corresponding results are provided in Table SA9. Our baseline conclusion remains robust against this alternative formulation.
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Xitb≡~b21Dirtyj � Regct�1 � PseudoLocalNetijct�1 þ ~b22Dirtyj � Regct�1 � PseudoNbrNetijct�1

þ~b23Dirtyj � Regct�1 � PseudoWideNetijct�1
(6)
One may expect that the coefficients ð~b21; ~b22; ~b23Þ are not statistically significant. In the Supplementary Appendix, Table
SA3 provides the corresponding results about the impacts of the firm’s pseudo regional internal network on plant death, using
probit models. In all columns, whereas the point estimates of the coefficients for the triple interaction terms are similar in
magnitude to those of the estimated models, they are not statistically significant at any conventional level. This result pro-
vides further corroborating evidence in support for the baseline conclusion that the genuinely regional firm’s internal net-
works do matter in terms of shaping the closure decision of a dirty affiliated plant located in a regulated county.

We further distinguish the firm’s pseudo internal network in neighboring counties into regulated and unregulated areas.
Let RegPseudoNbrNetijct�1 and UnregPseudoNbrNetijct�1 denote the number of neighborhood plants associated with the same
pseudo firm that are located in regulated or unregulated neighboring counties, respectively. Similarly, let
RegPseudoWideNetijct�1 and UnregPseudoWideNetijct�1 be the firm’s pseudowider-area internal network in regulated counties
and unregulated counties, respectively.

Xitb≡ ~b31Dirtyj �Regct�1 �RegPseudoNbrNetijct�1

þ~b32Dirtyj �Regct�1 �UnregPseudoNbrNetijct�1

þ~b33Dirtyj �Regct�1 �RegPseudoWideNetijct�1

þ~b34Dirtyj �Regct�1 �UnregPseudoWideNetijct�1 (7)
One may expect that the coefficients of interests, ð~b31;~b32;~b33;~b34Þ, should not deliver any economically and statistically
significant effects. In the Supplementary Appendix, Table SA4 provides the corresponding results, using both probit models
and OLS regression with more controls of fixed effects. Again, no statistically significant effects of the firm’s pseudo regional
network measures are documented, lending further support on the baseline conclusion.

6. Conclusion

In this article we examine the role of firm structure in determining plant death in response to increasingly stringent
environmental regulation while controlling for plant attributes, headquarters’ network, local agglomeration, and county
characteristics. We find strong evidence of heterogeneous responses to the stringent environmental control between multi-
plant and single-plant firms. Multi-plant firms have greater flexibility to respond to strict environmental controls. We find
that plant closure is a significant margin of adjustment for multi-plant firms. They are more likely to close affiliated plants
located in counties with stringent environmental regulationsdin particular, they are likely to shut down plants located far
away from the parent company or locations with many other similar plants in the same county. Moreover, in response to
regulatory pressure, the structure of a firm’s internal network matters. Multi-plant firms are more likely to close a plant in
regulated counties when they possess affiliated plants in counties neighboring the regulated county. This effect is mainly
driven by the firm’s internal network in unregulated neighboring counties, which is measured by the number of affiliated
plants in neighboring counties free from environmental regulations.

This article extends our understanding on the heterogeneous regulatory impacts of environmental regulation on firms’
production activities. Our results show that multi-plant firms do exercise their greater flexibility in adjusting to tough
environmental regulations, relative to single-plant firms. Increasing awareness of this fact makes the design and assessment
of environmental policies more challenging. On the one hand, similar to emission leakage across borders, we may experience
the unintended consequence of emissions leakage across affiliated plants through the internal network of multi-plant firms.
On the other hand, the ability of firms to shift production activities across plants can play a positive role by providing a cost-
efficient avenue for environmental compliance, one that can reduce emissions while minimizing the impact on production
and employment. Inevitably, in such circumstances, the impacts of policy may contribute to spatial inequality, echoing
concerns similar to those arising from the impact of trade liberalization and the role of multinational firms. Along this line, a
research venue worthy of further attention may be directly detecting the reallocation of production resources within the
firm’s internal network in response to local environmental pressures.
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Appendix

This appendix describes the detailed algorithm for matching plant-level data from different sources. We begin with
polluting plants reported in the NEI database of the EPA. The NEI database contains information about plants that emit criteria
air pollutants for all areas of the United States. Since 2002, it releases an updated version of the NEI database every three years
with the latest version released in 2008. Plants recorded in the NEI database emit at least one type of criteria air pollutant (i.e.,
CO, SO2, TSPs, NOx, and VOCs).

Next, wematch polluting plants in the NEI database with those that appear in the NETS database, using a name and plant-
identifier matching algorithm. The NETS database assigns the DUNS number to identify unique business facilities. The EPA
also has information of DUNS numbers for some polluting plants, but not all. Approximately 80% of polluting plants in the
manufacturing industry collected in the NEI database have associated DUNS numbers. However, the EPA does not provide
further information about how DUNS numbers are reported for polluting plants and why some plants have missing DUNS
numbers while others have more than one. In an attempt to circumvent this shortcoming, we consider a pair of plants from
each source as amatch, if the following series of criteria are satisfied. Theymust share the same DUNS number and are located
in the same county. More importantly, for each pair, we check the plant names from each source to ensure amatch. In the end,
this matching procedure narrows to 18,743 unique polluting plants, roughly half of manufacturing polluters reported in the
NEI database prior to matching.

We then take these 18,743 matched polluting plants into the NETS database to search for their related plants, which are
affiliated with the same parent company (i.e., headquarters). For each plant, the NETS reports information about its head-
quarters (e.g., the DUNS number, name, and location). In addition, it tracks the headquarters’ DUNS number over the study
period. Plants related to the matched polluters that appear in the NEI database are found in the NETS database through the
headquarters’ DUNS numbers. We restrict our sample to plants in the manufacturing industry as determined by four-digit SIC
codes (between 2000 and 4000). Consequently, we are left with around 1.2 million plant-by-year observations from 1990 to
2008, which gives us 153,582 unique plants affiliated with 44,069 unique headquarters. Note that the number of head-
quarters is larger than the number of polluting plants because, during the study period, some plants changed headquarters,
thereby bringing more headquarters and even more affiliated plants to the sample search.
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