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Abstract
This paper presents direct evidence on the impact of a
specific extension program that is aimed at promoting
the adoption of varieties resistant to the soybean cyst
nematode (SCN), specifically the Iowa State University
SCN-Resistant Soybean Variety Trials. We use two data
sources: experimental data from these variety trials and a
rich proprietary dataset on farmers’ seed purchases. Com-
bining these data, we estimate the value of soybean cyst
nematode-resistant variety availability, and the associated
variety trials that provide information on their perfor-
mance to farmers and seed companies. Given the scope
and diffusion of this extension program, the focus of the
analysis is on Iowa and northern Illinois over the period
2011–2016. Farmers’ seed choices are modeled in a dis-
crete choice framework, specifically a one-level nested
logit model. Using the estimated demand model, we find
farmers’ marginal willingness to pay for soybean cyst
nematode-resistant varieties, and for related extension
information provided by the Iowa State University SCN-
Resistant Soybean Variety Trials program, to be large.
These results are confirmed by counterfactual analyses
showing that, over the six-year period and region of the
study, the total ex post welfare change associated with the
existence of, and information about, SCN-resistant seeds
is about $478 million. About one-third of this surplus is
captured by seed suppliers, and two-thirds accrues to
farmers.

K E YWORD S

agricultural extension, nested logit, resistant varieties, seed market,
soybean cyst nematode, value of information

Received: 11 June 2020 Accepted: 6 December 2021

DOI: 10.1111/ajae.12283

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations
are made.

© 2022 The Authors. American Journal of Agricultural Economics published by Wiley Periodicals LLC on behalf of Agricultural & Applied Eco-
nomics Association.

Amer J Agr Econ. 2022;1–26. wileyonlinelibrary.com/journal/ajae 1

mailto:moschini@iastate.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/ajae
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fajae.12283&domain=pdf&date_stamp=2022-01-04


J E L C L A S S I F I C A T I ON

O14, O33, Q12, Q16

1 | INTRODUCTION

Agricultural extension has long been regarded as an important public service, especially as it relates
to technology adoption (Anderson & Feder, 2007; Evanson, 1997). Although the significance of
extension is widely recognized, empirical evidence on the magnitude of its economic impact is usu-
ally inferred indirectly from estimated links between extension activities and farms’ performance or
agricultural productivity (e.g., Dinar et al., 2007; Genius et al., 2013; Jin & Huffman, 2016; Maffioli
et al., 2011). Studies that provide direct evidence are rarer, and it is recognized that “getting a handle
on the value of extension to farmers is not a trivial task” (Anderson & Feder, 2007, p. 2349). In this
paper, we provide direct econometric evidence on the impact of a specific extension program, which
spans more than two decades and is aimed at promoting the adoption of varieties resistant to the
soybean cyst nematode (SCN), specifically the Iowa State University SCN-Resistant Soybean Variety
Trials (ISU-SCN). Our analysis is rooted in a structural model of seed demand, which is estimated
by leveraging two large and unique data sources.

The soybean cyst nematode is the most harmful pathogen to soybean yields in North America
(Allen et al., 2017; Bandara et al., 2020). This plant parasite (a microscopic roundworm) feeds on
soybean roots and can result in damages that have severe repercussions on production. Rec-
ommended management practices to deal with this pest include crop rotation with non-host plants
(such as corn) and, crucially, the adoption of SCN-resistant soybean varieties. Such varieties have
been developed over time by including certain wild-type soybeans into the breeding program for
commercial varieties. Not all SCN-resistant varieties are equally effective. Resistance is provided by
several genes, and it is understood that SCN-resistant varieties can vary a lot in the degree of resis-
tance they possess (and, of course, in their agronomic performance) (Tylka, 2012). Furthermore,
there are no regulatory standards that constrain a variety’s claim to be SCN-resistant. These consid-
erations have motivated the ISU-SCN program to evaluate hundreds of SCN-resistant varieties each
year for the last two decades, providing the most comprehensive set of SCN-resistant soybean variety
trials in the nation.

The purpose of this study is to econometrically estimate the value, to farmers and seed compa-
nies, of the availability of SCN-resistant varieties and the associated variety trials that provide
information on their performance. The presumption of our analysis is that, if the availability of
SCN-resistant varieties and knowledge about them and their performance produce value to farmers,
then this will be reflected in farmers’ choice of seed varieties. In other words, valuable SCN-related
characteristics would imply a shift in farmers’ seed demand. Whereas simple in principle, the quan-
titative characterization of this shift is challenging because the analysis needs to be performed at the
level on individual seed varieties. This presents two related but distinct challenges: The number of
varieties is very large, and information about choices pertaining to individual varieties is needed. A
common way to deal with the first issue—modeling demand when the set of products is very large—
is to follow the so-called characteristics-based approach in a discrete choice framework, and this is
what we do.

To address the second challenge—the availability of suitable data at the individual variety level—
our empirical analysis relies on two unique data sources: first, the extensive ISU-SCN variety trials,
which span the period 1997 to present. Over this period, ISU-SCN has tested a large number of
commercially available SCN-resistant varieties (about 125 soybean varieties per year). Performance
metrics from field trials, carried out annually at nine locations in Iowa, include yield rate and end-
of-season SCN population density. Results from these trials have been diffused broadly. Importantly,
in addition to being freely accessible online, starting from fall 2010 these results have been directly
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mailed to Iowa and northern Illinois farmers as a supplement to two widely distributed farm maga-
zines. The second data source we utilize is a large proprietary dataset of plot-level seed purchases, by
a representative sample of soybean farmers, collected by Kynetec USA, Inc. These data provide
variety-level estimates of farmers’ choices of soybean seed varieties and are available to us from 1996
to 2016.

The methodology we apply relies on estimating a discrete choice model of farmers’ soybean seed
demand, similar to the framework of Ciliberto et al. (2019) but with a notable difference. Specifically,
given the nature of the research question addressed here, the seed demand model we specify needs
to be at a much more granular level, namely at the individual variety level. Because the ISU-SCN
program targeted varieties mostly suited to Iowa and northern Illinois, our empirical analysis focuses
on seed purchases in Iowa and northern Illinois. Furthermore, as discussed in more details in what
follows, information from this program was considerably enhanced starting with the results of 2010
trials, which were made available before the 2011 planting season. Hence, the econometric analysis
focuses on seed demand over the period 2011–2016. The analysis is carried out at the market level,
where markets are identified by the crop reporting districts (CRD) and the year (Iowa and northern
Illinois together are composed of 14 CRDs).

We use a one-level nested logit demand model, where individual soybean varieties are the “inside
goods” and the observed acreage of corn grown provides our measure of the “outside option” that
defines the potential market size. This structure maintains that, on a given plot, there is higher sub-
stitutability between soybean varieties themselves than between soybean and corn varieties
(an attractive property in view of the widespread practice of crop rotation). Our estimation proce-
dure, based on Berry (1994), handles standard endogeneity concerns relating to price by the use of
instrumental variables. Furthermore, we control for products’ life cycles, a potentially confounding
factor that is specific to the variety-level specification of demand of this study.

Based on the estimated demand model, we calculate farmers’ willingness to pay (WTP) for the
SCN resistance trait and the extension information of tested SCN-resistant varieties. Extension
information about a given variety is proxied by three metrics: (a) being tested; (b) being tested and
performing above the median yield within the test sample; and, (c) being tested and performing
above the median SCN-infestation control within the test samples. Results indicate a substantial
response to these indicator variables: the WTP for the SCN resistance is $2.69/acre, and the WTP
for an SCN-resistant variety that is tested by ISU-SCN and performs in the top 50% of varieties for
the two metrics considered is $9.62/acre. Estimated WTPs provide a first-order approximation to
the total surplus produced by the innovation. The total surplus attributable to the availability of SCN
resistant varieties, and the associated information provided by the ISU-SCN program, is estimated at
$466 million (for in Iowa and northern Illinois during 2011–2016).

We provide a fuller assessment of the welfare implications of SCN resistance, and the related
extension activities, by using the estimated structural model to assess three counterfactual scenarios:
(a) the absence of both SCN resistance traits and the associated ISU-SCN extension program; (b) the
absence of the ISU-SCN program only; and, (c) the absence of variety-specific performance metrics
produced by the extension program. Prices for the counterfactual scenarios are predicted through a
hedonic price regression, as in Hausman and Leonard (2002). In our discrete choice formulation, the
expected profit from seed choices can be computed analytically as the inclusive values of the choice
set that farmers face. Differences between the inclusive values of alternative scenarios (e.g., with and
without ISU-SCN) permit calculation of welfare gains for farmers. The counterfactual demands with
predicted prices also allow us to calculate the net revenue change of seed suppliers. Over the period
and region of this study, the model predicts about $478 million of total ex post welfare gains from
the joint contribution of SCN resistance availability and the ISU-SCN extension program, with seed
suppliers capturing about one-third of this surplus and farmers obtaining two-thirds.

The rest of the paper is organized as follow. We first provide additional background on the SCN
and the ISU-SCN program, as well as a description of the ISU-SCN data and the Kynetec seed pur-
chase data. This is followed by a discussion of the modeling framework, including details on product
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and market definitions. The nested logit, discrete choice model is specified next, and this is followed
by a presentation of the estimation results. This is followed by welfare metrics obtained from the
estimated model, including counterfactual analyses to tease out the separate value of the availability
of SCN-resistant varieties, and the added value of the related extension program.

2 | BACKGROUND AND DATA

The value of SCN-resistant varieties to farmers (and society), in our model, arises from two sources:
innovation in the seed breeding industry, which has generated commercial varieties resistant to
SCN; and, extension activities, specifically the ISU-SCN program, which include experimental test
results to verify the effectiveness of individual varieties’ resistance, as well as the dissemination of
the associated information to farmers.

2.1 | SCN and extension information

The SCN (Heterodera glycines Ichinohe) has been reported as the most damaging pathogen of soy-
bean in North America for more than two decades (Allen et al., 2017; Bandara et al., 2020;
Koenning & Wrather, 2010; Wrather et al., 2001). In the United States, the SCN was first discovered
in North Carolina in 1954 and is currently found in all soybean-producing states except West Vir-
ginia (Tylka & Marett, 2021). This plant parasite, a microscopic roundworm, feeds on soybean roots
and can retard plant growth, causing a serious yield loss (yields are lower because fewer pods develop
on infected plants). Because the visual symptoms of SCN damage are hard to observe, farmers may
not be fully cognizant of the problem they face, and a major focus of agricultural extension in this
setting has indeed been that of improving farmers’ awareness by providing objective information.

Two recommended strategies to control this pest are crop rotation with non-host plants (such as
corn), and, crucially, the adoption and rotation of SCN-resistant varieties (Niblack, 2005).1 Such
resistant varieties have been developed over time by including certain wild-type resistant lines (the
source of resistance) into the breeding program of commercial varieties. This process is lengthy and
difficult, due to the complex and polygenic nature of SCN resistance. There is also the concern that
resistant varieties may experience a yield penalty when pest pressure is low. As a result, there exists a
considerable variation of the SCN resistance between SCN-resistant varieties, and yield performance
and SCN population suppression can vary a lot depending on the seed choice as well as land condi-
tion and other agronomic factors (Tylka, 2012).

Iowa State University conducts the most comprehensive SCN-resistant variety trials among simi-
lar extension programs in the United States (Staton, 2013). In the ISU-SCN, information for exten-
sion is procured from field experiments on SCN-resistant varieties, carried out annually at up to
nine locations in Iowa. More than 100 SCN-resistant varieties are evaluated every year, along with
several popular traditional (SCN-susceptible) varieties that serve as experimental controls in repli-
cated field plots. After the harvest, the experiment records yield rates, and collects the soil samples
from each experimental plot to count the SCN population density (eggs/100 cc) at the end of the sea-
son, a measure of SCN infestation inversely related to the effectiveness of SCN resistance for the
given variety. Consequently, the ISU-SCN’s reports display SCN-resistant varieties with their
SCN-resistance source and field performances (including yield rate and end-of-season SCN density
after harvest).2 Starting in 1997, their annual summary reports have been posted online to be freely
accessible and diffused broadly. In the last two decades, an average of about 125 different varieties

1Chemical control through the use of soil nematicides is expensive, not particularly effective, and seldom used. By contrast, the use of
nematode-protectant seed treatment is gaining some acceptance in recent years, but such protectants are best viewed as supplementing the
primary SCN management strategies (Bissonnette & Tylka, 2017).
2Section B of the online supplementary material provides more details about the ISU-SCN data.

4 VALUE OF INNOVATION AND EXTENSION INFORMATION



each year have been documented. Importantly, since fall 2010, the reports have been directly mailed
in the post-harvest season to virtually all Iowa and northern Illinois farmers as a supplement to the
magazines Iowa Farmer Today and Illinois Farmer Today. Through these weekly periodicals the
ISU-SCN reports have been distributed, free of charge, to about 70,000 farm owners and operators
in Iowa and northern Illinois.3

Consistent with the scope of the ISU-SCN program, and the diffusion of extension information,
we define the region and time for the study as Iowa and northern Illinois, with seed choices spanning
the period 2011 to 2016.

2.2 | Seed purchase data

For seed purchase observations, we use a proprietary dataset (TraitTrak) for soybean seed purchases,
collected by the survey company Kynetec USA, Inc. These farm-level data provide rich information
on plot-level seed purchases such as price, seed trait, variety, brand, parent company, quantity pur-
chased, and projected acres. The Kynetec data are available to us from 1996 to 2016. Based on the
information diffusion from ISU-SCN, we mainly exploit the data after 2010. Notwithstanding that,
observations prior to 2010 are also used to provide information about the product life cycle of culti-
vated varieties and for assembling the stock of known SCN-resistant varieties. The Kynetec dataset is
designed to be a representative sample of soybean growing farms at the CRD level.4 Kynetec data for
the two states and period of interest (Iowa and northern Illinois over 2011–2016) include an average
of 717 farmers per year and 2186 plot-level seed purchase observations per year.

2.3 | Descriptive statistics

The ISU-SCN dataset is merged to the Kynetec data at the variety level. Over the period 1997–2015,
ISU-SCN tested 1904 varieties (1798 for SCN-resistant varieties, as well as 106 susceptible varieties
that served as controls). Not all tested varieties are observed in the seed purchase data: 656 of the
SCN-resistant tested varieties are observed in the seed data over the entire period; and, in the estima-
tion period of 2011–2016, 381 tested SCN-resistant varieties are observed.

In this study, we consider two distinct levels of information concerning SCN resistance “attri-
butes” of observed soybean varieties. First, whether a variety is indeed SCN-resistant, that is, it
carries genes from the source of resistance genetic stock. We assemble this information from various
extension publications,5 and we treat it as common knowledge as this information is known to seed
companies themselves and conceivably conveyed to buyers (farmers) by seed sales agents. The sec-
ond set of attributes concerns whether a particular SCN-resistant variety was tested by the ISU-SCN
program, and the performance metrics resulting from the field trials. Whether or not a soybean vari-
ety possesses SCN resistance in its genome may be taken to represent the underlying raw value of
innovation, which is brought about by R&D and breeding activities; given that, one would conclude
that being tested by the ISU-SCN program and the performance metrics produced and disseminated
by this program are valuable information signals that pertain to the true value-added of extension.

3Choice of this region is not simply dictated by proximity to the extension service provider, it is also a reflection of relevant agro-climatic
conditions. Soybeans are photoperiod sensitive, such that varieties are classified into maturity groups specific to each latitude (Mourtzinis &
Conley, 2017). Furthermore, some varieties are better adapted to local growing conditions than others. The varieties included in the ISU-SCN
study are most likely to be of interest to farmers in Iowa and northern Illinois.
4CRDs are aggregates of counties, as defined by National Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA).
Section A of the online supplementary material provides a more detailed description on this seed dataset.
5In addition to performing field trials on a subset of SCN-resistant varieties, ISU-SCN has endeavored to compile and distribute annually a list
of all available SCN-resistant varieties through their so-called PM-1649 publication “Soybean cyst nematode-resistant soybean varieties for
Iowa.” The total list of all SCN-resistant varieties that we have assembled by combining all extension information, over the period 1997–2016,
contains 6912 varieties.
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As discussed later, however, more nuanced interpretations of the roots of the value of SCN-related
soybean seed characteristics are possible.

Figure 1 provides an overview of our data structure. In the six-year timeframe of this study, in
Iowa and northern Illinois, we observe soybean seed purchases for 2265 distinct varieties, among
which 1103 are SCN resistant. Within these SCN-resistant varieties, 381 varieties are found in the set
of varieties tested by ISU-SCN. Figure 2 provides some evidence on the diffusion and adoption of
SCN-resistant varieties over time. From low market shares at the beginning of this period, the uptake
of SCN-resistant varieties has been steady, a testament to the commitment of both seed companies,
who mustered the required breeding efforts, and extension activities, which educated farmers to rec-
ognize and deal with SCN-infested production conditions. Around 40% of soybean acreage is
accounted for by ISU-SCN tested resistant varieties in our study period, 2011–2016.

3 | MODELING FRAMEWORK

The model we develop is rooted in Berry’s (1994) influential formulation, which shows that an
individual-level discrete choice problem can be aggregated such that it can be estimated, as a linear
model, with market level data and that an estimation procedure can be devised to account for critical
endogeneity issues via standard instrumental variables techniques.

As discussed in Richards and Bonnet (2018), discrete choice models are particularly useful for
problems that entail a large number of choices and when the focus is on the attributes of goods. Dis-
crete choice modeling of agricultural technology adoption was implemented by Useche et al. (2009)
in the context of studying genetically engineered (GE) trait adoption in corn seed demand. They use
survey data and, as in Nevo (2001), they include demographic information in their multinomial logit
demand model. Useche et al. (2012) apply discrete choice modeling to learning, a context also inves-
tigated by Ma and Shi (2015). Because our data do not provide demographic information, we specify
the seed demand model at the market level, following Berry (1994). In particular, we specify a nested
logit model to improve upon the multinomial logit in terms of producing more realistic substitutabil-
ity patterns.

3.1 | Market definition

We define a market in terms of time–region combination, following Berry et al. (1995). Specifically,
the regional level of our analysis is the CRD. The area of our study, Iowa and northern Illinois, con-
tains 14 CRDs (nine in Iowa and five in northern Illinois) and the estimation period encompasses
six6 years, from 2011 to 2016, as discussed earlier (thus, our analysis covers 84 markets).

F I G U R E 1 Number of soybean seed varieties: ISU-SCN and Kynetec data, Iowa and northern Illinois. This Venn
diagram illustrates the relationship between the number of SCN-resistant and SCN-susceptible varieties, the number of such
varieties tested by ISU-SCN, and the number of such varieties observed in the Kynetec seed purchased data
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In discrete choice models of demand, a necessary step concerns the definition of the potential
market size. In our context, the relevant market size is the number of acres that are potentially avail-
able for soybean planting. We take this to be represented by the total area planted to either corn or
soybeans. In the seed purchase sample we use, area planted to either soybeans or corn is, on average,
2.6 million acres per market (41% of which planted to soybeans). These are by far the two most
important crops in Iowa and Illinois. Although some corn monoculture is practiced, in most cases
farmers follow rotation practices whereby soybeans almost always follow corn, either in a corn–
soybean rotation or in a corn-corn-soybean rotation.

3.2 | Brands

Table 1 illustrates the supply structure of soybean seeds, for the period and region of interest, at
three levels: parent company, brand, and variety (the latter distinguished varieties according to
their SCN-related characteristics). A total of 93 distinct seed brands are observed in Iowa and
northern Illinois during 2011–2016, but Table 1 lists only individual brands that have more than
1% market share. Five major companies account for about 82% of soybean seed sales, and are
listed separately—the other significant brands are shown in the “local and regional” company
group. For the purpose of controlling for brand fixed effects, in the regression analysis that fol-
lows, brands with less than 1% share are combined in an “others” set within each of their respec-
tive company groups.

From Table 1, it is apparent that the soybean seed market configuration is that of a highly con-
centrated, differentiated-product industry. The two most prominent brands from Dupont and
Monsanto (Pioneer and Asgrow, respectively) account for more than half of the market share. From
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the perspective of demand estimation, equilibrium pricing in such an industry inevitably raises the
issue of potentially endogenous prices, which we will address at the estimation stage.

Soybean seed prices are typically quoted in $/bag, where a bag historically contained 50 lbs of
seed. Starting in 2013, the industry moved to units defined by seed count, with a bag containing
140,000 seeds. For clarity, in this article seed prices are expressed as seed expenditure per planted
acre. Table 2 reports some summary statistics of the data used in estimation, including prices.6 Prices
are reported separately for SCN-resistant and susceptible varieties, as well as for conventional and
glyphosate tolerant (GT) groups. Although GT products are generally about $9/acre more expensive

T A B L E 1 Market shares and number of varieties, Iowa and northern Illinois, 2011–2016

Parent company—main brands Market share

Number of varieties

Total SCN-resistant
Tested by
ISU-SCN

AgReliant—LG Seeds 2.66% 127 91 11

Dow Agrosciences—Prairie Brand, Mycogen 4.82% 230 125 60

Dupont—Pioneer 35.82% 365 152 81

Monsanto—Asgrow, Channel, Kruger Seeds, Stone Seed Farms 29.04% 454 257 112

Syngenta—NK Seeds 9.68% 115 66 58

Local & regional companies—Beck’s Hybrids, Stine Seed
Company, Growmark/FS, Croplan Genetics

17.98% 974 412 120

Total 100% 2265 1103 442

of which GT 1958 964 420

of which conventional 307 139 22

Source: ISU-SCN data and Kynetec data.

T A B L E 2 Summary statistics

Variable Mean SD Min Max N

Price ($/acre) 51.95 9.52 15.43 114.30 7141

SCN resistant varieties 52.65 9.01 18.74 114.30 4626

Non-resistant varieties 50.68 10.26 15.43 105.37 2515

GT varieties 52.70 9.16 18.74 114.30 6547

Conventional varieties 43.68 9.43 15.43 73.41 594

SCN resistance trait 0.65 0.48 0 1 7141

Tested by ISU-SCN 0.36 0.48 0 1 7141

Yield top 50% 0.20 0.40 0 1 7141

SCN control top 50% 0.18 0.38 0 1 7141

GT trait 0.92 0.28 0 1 7141

Product age 3.60 3.56 1 21 7141

No. of products per market 85.01 27.82 37 142 84

Inside option market share 0.41 0.06 0.26 0.56 84

Outside option market share 0.59 0.06 0.44 0.74 84

Note: Prices are expressed in 2011 dollars.

6Consistent with the empirical application that follows, nominal prices are deflated by the crop sector index for price paid, as provided by
USDA (index = 1 in 2011).
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than non-GT products, SCN resistance does not appear to command large price premiums. The
average difference between SCN-resistant and regular (susceptible) varieties is about $2/acre.

3.3 | Products and seed traits

In the discrete choice model that we employ for the empirical analysis, the choice set must satisfy
three characteristics: mutually exclusive, exhaustive, and a finite number of alternatives
(Train, 2009). Farmers can choose only one seed product in a given plot, so the choice situation
obviously fits the discrete choice framework, and as long as the three conditions above are satisfied,
any way of product definition can technically work. The seed demand model of Ciliberto et al. (2019)
relies on the notion of “product lines,” defined by a combination of four components: crop (corn or
soybeans), parent company, brand, and presence of GE traits. Our product definition needs to be
more refined than that, however, because the nature of our research question requires products to be
defined at the variety level. In total, over all markets considered, we have 2265 distinct varieties.

A major trend in the soybean industry over the last two decades has been the adoption of GT
varieties, that is, GE varieties that can withstand over-the-top application of the broad-spectrum her-
bicide glyphosate. GT soybean varieties were rapidly adopted, following their introduction in 1996,
and this diffusion process reached its maturity around 2010, when the share of U.S. soybean acres
planted with GT seeds plateaued at around 93% (see, e.g., Fernandez-Cornejo et al., 2014). This
observation provides an additional justification for our choice to focus the seed demand model over
the 2011–2016 period. To be specific, during the GE adoption phase, it is likely that a choice of
SCN-resistant variety could have happened incidentally, not because of ISU-SCN but because of the
GE trait. Post 2010, however, after the adoption of soybean GT varieties had reached a plateau, this
issue should not affect our analysis.

Table 2 shows the average number of varieties in each market over the period of study. It is
apparent that the choice sets in our model are quite large, including an average of about 85 varieties
per market. This table also reports the contemporaneous standard deviation for the number of varie-
ties (across CRDs), which illustrates a fair amount of choice-set variation. The data also show a
resurgence of conventional varieties in more recent years, from an average 3.8 per market in 2011 to
14 per market in 2016, likely in response to the emergence of glyphosate-resistant weeds.

3.4 | Product life cycle

Because a distinguishing feature of our analysis is that it is carried out at the variety level, we also
need to account for the “product life cycle,” an issue that did not arise in the “product line” defini-
tion of products used by Ciliberto et al. (2019). Specifically, seed companies continuously introduce
new varieties and discontinue old varieties, and newly released seed varieties tend to have a relatively
short life cycle (Magnier et al., 2010). Because in our demand model the desirability of a variety is
reflected in its market share, and the latter in turn is influenced by its life cycle, ignoring the product
life cycle would heavily bias estimation results. We characterize this attribute of a variety by its
“age,” defined as the number of years since its first market introduction. To determine the latter we
use the entire sample in the Kynetec data, which encompasses 31 states (not just Iowa and Illinois)
and 21 years.7 For varieties observed chosen by Iowa and northern Illinois farmers in our sample,
the average age is 3.60 years, and the average life cycle (i.e., the number of years a variety is observed
in the full U.S. sample) is 6.88 years.

7Inevitably, some truncation arises earlier in the sample—varieties grown in 1996, the first year in our sample, are assumed to be introduced in
that year. This earlier truncation effect tends to wash out over time, and it is insignificant for the period 2011–2016 used in the econometric
analysis.
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Figure 3 illustrates the frequency of soybean seed products by their commercial age, both for the
region of interest (Iowa and northern Illinois) and the entire United States. We report frequencies
instead of market share by product age because frequencies may not be as affected by market-related
circumstances such as price or seed trait. It is apparent that there exists a strong obsolescence pattern
in soybean seed varieties. For example, during the period of 2011 to 2016, varieties commercialized
within three years accounted for about 70% of the available seed products. Conditioning the demand
model by a variety’s age, therefore, accounts for the average handicap faced by older varieties in the
market and thus aids in the identification of the other determinants of seed choice that are of
interest.

4 | SEED DEMAND MODEL

Consider a farmer choosing the seed variety j, on plot i, in market m, and denote the expected per-
acre profit associated with each element of the farmer’s choice set as πijm. The farmer is assumed to
choose the seed variety that provides the largest expected profit. Given that Jm varieties are available
in market m, the farmer’s profit-maximizing choice entails solving

max
j

πijm, j� 0,1,…, Jmf g ð1Þ

where j¼ 0 is the outside option (i.e., growing corn).
To implement this discrete choice problem, one needs to parameterize m the payoffs πijm. Fol-

lowing standard practice, we write the per-acre payoffs as linear functions of observable attributes
and unobservable components, as follows:

πijm ¼ β �pjmþ γ �xjþ
X9

k¼1
αkZ

k
jt m½ � þξAjt m½ � þξt m½ � þ ξl m½ � þ ξb j½ � þ ξjmþ εijm ð2Þ
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F I G U R E 3 Obsolescence pattern of soybean seeds, 2011–2016. This chart illustrates the frequency of soybean seed
varieties by age. Frequency is computed using the entire U.S. soybean seed sample (orange) and the subsample of Iowa and
northern Illinois (blue), with age computes with information starting in 1996
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where pjm denotes the (deflated) variety’s price, expressed on a per-acre basis, and xj is a dummy
variable that codes for whether or not the variety in question includes the GT trait.

The next set of variables in (2) reflects information related to SCN resistance and the ISU-SCN
program. We capture such information in terms of four primitive indicator variables. The first such
variable, ISCN�r

j , takes the value of 1 if the given variety possesses SCN-resistance, and 0 otherwise.
Next, the indicator variable Itestedj,t m½ � takes the value of 1 if the given variety had been tested by ISU-
SCN (and the results disseminated) by the year defined by market m, and 0 otherwise. Finally, other
qualitative results of ISU-SCN experiments are capture by two performance indicators: Itop�y

j,t m½ � flags
varieties that performed better than the 50th percentile in terms of yield, and Itop�s

j,t m½ � flags varieties
that performed better than the 50th percentile in terms of end-of-season SCN population density
(a measure of SCN infestation and thus a metric of SCN resistance).8 Descriptive statistics on the
distribution of these four indicator variables are reported in Table 2.

Given these four “treatments,” varieties in any given market fall into 10 mutually exclusive
groups. Taking “not-SCN-resistant, not tested” as the reference group, the treatments are fully iden-
tified by the nine suitably defined dummy variables that appear in Equation (2)9:

Z1
jt m½ � � ISCN�r

j

Z2
jt m½ � � ISCN�r

j � Itestedj,t m½ � � Itop�y
j,t m½ � � Itop�s

j,t m½ �

Z3
jt m½ � � ISCN�r

j � Itestedj,t m½ � � Itop�y
j,t m½ �

Z4
jt m½ � � ISCN�r

j � Itestedj,t m½ � � Itop�s
j,t m½ �

Z5
jt m½ � � ISCN�r

j � Itestedj,t m½ �

Z6
jt m½ � � Itestedj,t m½ � � Itop�y

j,t m½ � � Itop�s
j,t m½ �

Z7
jt m½ � � Itestedj,t m½ � � Itop�y

j,t m½ �

Z8
jt m½ � � Itestedj,t m½ � � Itop�s

j,t m½ �

Z9
jt m½ � � Itestedj,t m½ � :

The remaining terms in Equation (2) include a set of fixed effects meant to control for variables that
affect the per-acre profit but are unobserved (such as other input prices). Specifically, ξAjt m½ �, ξt m½ �,
ξl m½ �, and ξb j½ � represent the product age, time (year), region (CRD), and brand fixed effects; the term
ξjm captures all other unobserved product-market specific components; and, the term εijm represents
elements that are specific to plot i and variety j that are unobservable to the researcher but are
known to the farmer making the seed choice. The parameters to be estimated are β, γ, and the set of
αk (and, of course, all of the included fixed effects).

8These performance metrics measure a variety’s specific performance (for yield or end-of-season SCN density) relative to the experiment’s
control group (non-resistant varieties). Section B of the online supplementary appendix provides more details. Results for an alternative
specification of performance metrics are reported in Section F of the online supplementary appendix.
9This is illustrated in Table X4 in the online supplementary appendix.
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4.1 | Nested logit

To make the foregoing discrete choice framework operational, we need to make assumptions about
the distribution of unobserved terms. Following Berry (1994), it is convenient to represent with δjm
all terms in Equation (2) that are common to all plots in the same market and planted with the same
variety. That is, δjm represents the mean expected per-acre profit of variety j in market m. Hence,
per-acre profit can be represented as:

πijm ¼ δjmþ εijm ð3Þ

From the problem in Equations (1) and (2), and the structure in Equation (3), observing the selec-
tion of variety j, in a given choice situation, means that εijm� εikm ≥ δkm�δjm. Assuming that the
unobserved terms εijm are identically and independently drawn from a Type I Extreme Value (TIEV)
distribution, then choice probabilities (or, equivalently, market shares) take the familiar multinomial
logit structure (Train, 2009):

sjm �Pr πijm ≥ πikm, 8k≠ j
� �¼ exp δjm

� �P
kexp δkmð Þ : ð4Þ

It is well known, however, that the multinomial logit model entails unrealistic substitution patterns
(e.g., Debreu, 1960). For example, suppose that one soybean variety becomes unavailable. The multi-
nomial logit model would imply the farmer would be equally likely to choose the outside option
(corn) as any other soybean product to replace the discontinued product, whereas one would expect
other soybean varieties to be closer substitutes. To deal with this issue, we apply a one-level nesting
structure. As discussed earlier, for a given plot farmers first choose either the outside option (corn)
or the inside option (soybeans).10 Conditional on planting soybeans, farmers select a specific seed
variety. We also note that this nesting structure is consistent, inter alia, with the common practice of
crop rotation.

This one-level nesting model puts structure on the plot-specific unobserved component,
εijm.8k� 0,1,…, Jmf g. Having grouped individual choices as inside option and outside option, we
denote these two exclusive groups by g � 0,1f g, where g¼ 0 means a farmer plants corn, whereas
g¼ 1 indicates choosing one of the soybean varieties. Given that, the unobserved component is writ-
ten as:

εijm ¼ vigmþ 1�σð Þvijm ð5Þ

where vijm is independent and identically drawn from a TIEV distribution; vigm is a term that is com-
mon to all varieties in the group; and, the nesting parameter σ � 0,1½ Þ captures correlation between
varieties within the inside option group. The term vigm is assumed to have the unique distribution
such that εijm again follows the TIEV distribution (Cardell, 1997). The larger the σ, the stronger the
correlation between the varieties within the group. That is, if σ is significantly high, the nesting struc-
ture becomes compelling and farmers tend to stay in the inside option when switching to another
choice. By contrast, as σ approaches 0 the model reduces to the simple multinomial logit.

One of the attractive properties of the nested logit model is that, although generalizing the substi-
tution pattern between alternatives, relative to the multinomial logit, still yields a closed-form repre-
sentation of choice probabilities with the nesting structure (Berry, 1994; Train, 2009). In market m,
the conditional share of variety j (one of the inside options) is:

10Saved soybean seeds are also included in the outside option as they are not commercially traded. In our data, about 1.68% of soybean
farmland per market are observed using saved seeds.
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sjmjg¼1 ¼
exp δjm

1�σ

� �
P

k � J1m
exp δkm

1�σ

� � ð6Þ

where J1m is the set of soybean products only (e.g., for g¼ 1) in market m. Without loss of generality,
for the outside option we set δ0m ¼ 0, implying πi0m ¼ εi0m. The probabilities of choosing the inside
option (S1m), and outside option (s0m), are, respectively:

S1m ¼
P

k � J1m
exp δkm

1�σ

� �h i 1�σð Þ

1þ P
k � J1m

exp δkm
1�σ

� �h i 1�σð Þ , ð7Þ

and

s0m ¼ 1

1þ P
k � J1m

exp δkm
1�σ

� �h i 1�σð Þ : ð8Þ

The unconditional probability of choosing a soybean variety j can then be defined as sjm � sjmjg¼1 � S1m:
Using (6), (7), and (8), it then follows that ln sjm=s0m

� �� δjþσln sjmjg¼1

� �
. Recalling the structure of

the mean profit terms δj—implicitly defined by the identity of (2) and (3)—the log ratio of market
shares is:

ln sjm=s0m
� �¼ βpjmþ γxjþ

X9

k¼1
αkZ

k
jt m½ � þσln sjmjg¼1

� �þξAjt m½ � þξt m½ � þξl m½ � þ ξb j½ � þ ξjm ð9Þ

Thus, the parameters of the structural demand model can be recovered by estimating this linear
regression.

4.2 | Identification

The key identification issue, in this setting, is related to the possible price endogeneity in Equation (9)
and also the endogeneity of the conditional share appearing on the right-hand side of Equation (9).
As shown in Table 1, the market is highly concentrated, products are differentiated by known attri-
butes, and presumably the observed seed variety prices display the equilibrium price choices of seed
firms. In such a setting, one should expect a positive correlation between ξjm and pjm in Equation (9).
This is because the term capturing product and market-specific attributes of seed variety j, which is
unobserved to the econometrician, is arguably known to firms when they make their pricing deci-
sions. Without controlling for this correlation, the price coefficient α would be biased.

To deal with the foregoing identification issues, we follow standard practice and assume that the
location of products in the product space (i.e., the distinguishing characteristics of commercial varie-
ties, in our case) is exogenous to the pricing decisions, a strategy originally suggested by
Bresnahan (1987) and developed and implemented by Berry (1994) and Berry et al. (1995). We fol-
low Ciliberto et al. (2019) and use functions of the traits in competing varieties as instrumental vari-
ables (IVs). They provide a detailed discussion of why the assumption of exogenous location in
product space may be particularly reasonable for the seed industry. This is because the introduction
of new varieties, especially those embedding special traits, takes a long time, is affected by stochastic
elements, and is arguably largely exogenous to firms’ pricing decisions. In particular, we use two
such IVs: the number of competing products in the same market that share the same trait (i.e., either
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conventional or GT), both regardless of brand and outside the variety’s own brand. In addition, we
also use the previous year’s corn acreage in that CRD as an instrument. This is meant to capture
both a market size effect and the potential impact of crop rotation. Rotation between corn and soy-
beans plays an important role in midwest agriculture, although its dynamics can be complex, espe-
cially in the short run (Hendricks et al., 2014; Kim & Moschini, 2018).

5 | ESTIMATION RESULTS

Table 3 reports estimation results for the demand model. Results from both ordinary least squares
(OLS) and two-stage least squared (2SLS) that rely on instrumental variables are reported. Our main
interest, of course, is in the 2SLS estimates; OLS results are presented for comparison purposes to
help assess the instrumental variable procedure we implement. We note at the outset that estimates
for α6 and α8 are not reported because these parameters cannot be identified by the data: The
corresponding treatment groups (SCN-susceptible and tested varieties that performed in the top
group for both performance metrics, and for the SCN control metric) turned out to be empty
(Table X4 in the online supplementary appendix).

OLS estimates are clearly problematic. Most worryingly, the nesting parameter σ appears close to
violating its theoretical upper limit.11 Not surprisingly, then, virtually all parameters (including the
price coefficient) turn out to be not significantly different from zero. The 2SLS estimates perform
much better. The use of instrumental variables, as discussed earlier, is meant to account for the
endogeneity of prices and of the conditional market shares, ln sjmjg¼1

� �
. In particular, we note that

the estimated price coefficient has the expected negative sign and is larger in magnitude than with
OLS, which suggests a positive role of the IVs employed (endogeneity typically biases the price coef-
ficient toward zero).

The other estimated 2SLS coefficients in Table 3 also appear more reasonable. As a benchmark,
the GT trait coefficient is large and significantly different from zero, indicating that farmers’ per-acre
profit is, on average, positively affected by this GE trait (consistent with empirical evidence from
much previous work). The nesting coefficient σ is now estimated at about 0.81. Although somewhat
larger than in many applications, nesting coefficients of this magnitude are not unique (e.g., An &
Zhao, 2019) and are well within the theoretical bounds 0,1½ Þ. This relatively large coefficient can be
rationalized by the specifics of our application. Recall that this parameter controls the within-group
substitutability of soybean varieties relative to the outside option. Insofar as a soybean variety is a
much closer substitute to another soybean variety than it is to corn (because of the farmer’s desire to
meet rotation objectives, say), then one would expect a large estimate for σ.12 Several of the coeffi-
cients of the SCN-related indicator variables, specifically of interest in this study, are also signifi-
cantly different from zero.

To assess the quality of the IVs used, the first-stage regression results are reported in Table 4. All
three IVs are statistically significant in the price equation, and one of them is significant in the con-
ditional share equation. As noted by Pakes (2003), given the Bertrand-Nash competition assumption,
these coefficients capture equilibrium relationships and may be difficult to interpret, per se. Still,
from these estimated coefficients we may note that, holding the total number of competing varieties
constant, an increase in the number of products outside of the own brand (more competition) would
tend to reduce price, whereas an increase in the number of products of the same brand (less compe-
tition) would tend to increase price. A larger market size (as captured by the lagged corn acres) also
seems associated with lower price and smaller individual conditional shares.

11As noted by a reviewer, σ¼ 1 on the left-hand-side of the regression can be re-expressed as ln sjm
� �� ln s0mð Þ� ln sjmjg¼1

� �¼ ln S1mð Þ� ln s0mð Þ,
the model would attempt to identify parameters from the ratio of market shares of soybeans to corn, which does not vary across varieties.
12See Kovo and Eizenberg (2017) for further discussion on the issue of identification when the size of the nesting coefficient is close to one.
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The full set of results pertaining to individual varieties’ age fixed effects is reported in Section C
of the online supplementary appendix. These results illustrate the fact that, ceteris paribus, newer
varieties (particularly ages 2 to 4) are positively related to market share. Also, these varieties’ age
fixed effects appear quite relevant as instrumental variables in first-stage regression (in particular,
age is inversely related to varieties’ price).

Concerns about the quality of these instrumental variables, and in particular the question of
potentially weak instruments, are inevitable in this setting. To investigate this issue, given that our
model entails two endogenous variables, we use the conditional F-statistic suggested by Sanderson
and Windmeijer (2016) (SW F-statistic in Table 4). Both computed SW F-statistics, for price and
conditional market share, appear above 10, the traditional Stock and Yogo (2005) threshold. This is
somewhat reassuring, although, again, it is difficult to completely resolve such IV issues.

5.1 | Hypothesis tests and willingness-to-pay estimates

The hypothesis test outcomes in Table 5 provide more specific insights from the estimated results.
First, the hypothesis that the SCN resistance attribute has no effect on seed demand, requiring
α1 ¼ α2 ¼ α3 ¼ α4 ¼ α5 ¼ 0, is clearly rejected (p-vale of 0.0051). The overall impact of being tested
by ISU-SCN is captured by the null hypothesis α2 ¼ α3 ¼ α4 ¼ α5 ¼ α7 ¼ α9 ¼ 0, which is again
rejected (p-value of 0.0001). Performance indicators provide differing results, however. Scoring in
the top 50% in terms of yield has a significant effect—the null hypothesis of no impact, requiring
α2 ¼ α3 ¼ α7 ¼ 0, is rejected (p-value of 0062). Scoring in the top 50% in terms of end-of-season

T A B L E 3 Estimated parameters of the demand model

ln sjm=s0m
� � OLS 2SLS (IV)

Coefficient S.E. Coefficient S.E.

β Price ($/acre) 0.0000007 (0.000099) �0.00953* (0.00504)

α1 SCN resistant (SCN) 0.00278 (0.00239) 0.0256*** (0.00806)

α2 SCN � Tested � top-y � top-s �0.00225 (0.00669) �0.000400 (0.0207)

α3 SCN � Tested � top-y �0.0306 (0.0363) 0.139*** (0.0523)

α4 SCN � Tested � top-s 0.00488 (0.00515) �0.00222 (0.0160)

α5 SCN � Tested �0.00789 (0.00724) �0.0863*** (0.0255)

α7 Tested � top-y 0.0326 (0.0360) �0.102** (0.0452)

α9 Tested 0.00495 (0.00582) 0.119*** (0.0263)

γ GT trait 0.00950*** (0.00318) 0.0924** (0.0436)

σ Nesting corr. 0.999*** (0.000786) 0.810*** (0.0336)

Constant �0.897*** (0.00770) �1.548*** (0.262)

Product age FE Y Y

Year FE Y Y

CRD FE Y Y

Brand FE Y Y

IVs (3) Y

Observations 7141 7141

R2 0.996 0.964

Note: Parameters α6 and α8 are not identified by the data at hand (the corresponding sets of treatments are empty). Standard errors are in
parentheses.
*p < 0.1, **p < 0.05, ***p < 0.01.
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SCN density measure, however, appears to have no impact at all on seed demand—the
corresponding null hypothesis α2 ¼ α4 ¼ 0 fails to be rejected (p-value of 0.97).

The magnitude of the estimated parameters concerning product characteristics can be better
understood by expressing them in terms of (marginal) WTP. As a benchmark, we can start with the
model’s estimates of the WTP for the GT trait, which can be obtained by dividing the attribute’s
parameter by the price coefficient (i.e., �γ=β) (Train, 2009). We find that this WTP is about $10/
acre. This estimate is comparable, albeit somewhat lower, to that reported by Ciliberto et al. (2019),
but account must be taken that the region of analysis and the period studied are different.13 Con-
cerning attributes related to SCN and ISU-SCN information, Table 6 reports three WTP estimates.
For the SCN resistance trait per se, estimated as �α1=β, we find that WTP equals $2.69/acre. For

T A B L E 5 Hypothesis tests

Testing Result

Test 1: SCN vs. no SCN bχ = 16.69, Prob > χ 5ð Þ = 0.0051

Test 2: Testing vs. no testing bχ = 26.95, Prob > χ 6ð Þ = 0.0001

Test 3: Top 50, yield bχ = 12.39, Prob > χ 3ð Þ = 0.0062

Test 4: Top 50, SCN control bχ = 0.06, Prob > χ 2ð Þ = 0.9697

T A B L E 4 First stage regression result

Price ln(conditional share)

Coefficient S.E. Coefficient S.E.

IVs: No. of competing products

Same trait regardless of brand 0.135*** (0.0317) �0.0109*** (0.00393)

Same trait outside of own brand �0.147*** (0.0322) 0.00319 (0.00400)

IV: Lagged corn acreage �0.00403** (0.00163) �0.000142 (0.000200)

SCN resistant (SCN) 0.528* (0.299) 0.0917*** (0.0319)

SCN � Tested � top-y � top-s 1.104 (0.692) �0.0452 (0.0940)

SCN � Tested � top-y �4.221 (5.484) 1.132** (0.556)

SCN � Tested � top-s �1.160** (0.535) 0.0179 (0.0713)

SCN � Tested 0.257 (0.736) �0.414*** (0.101)

Tested � top-y 4.035 (5.461) �0.942* (0.552)

Tested 0.643 (0.600) 0.562*** (0.0843)

GT trait 8.980*** (0.930) 0.586*** (0.105)

Constant 48.62*** (3.465) �5.088*** (0.424)

N 7141 7141

R2 0.179 0.190

F-statistic (3, 7085) 9.52 13.60

SW F-statistic (2, 7085) 14.25 20.29

Note: Standard errors are in parentheses. The lagged corn acreage is measured in thousands of acres. Both equations include product age fixed
effects, year fixed effects, CRD fixed effects, and brand fixed effects.
*p < 0.1, **p < 0.05, ***p < 0.01.

13In particular, they study seed demand over 1996–2011, whereas we focus on the more recent 2011–2016 period. Factors possibly contributing
to declining farmers’ WTP for GT over the period of this study may include declining commodity prices and the emergence of glyphosate
resistant weeds.
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varieties that are SCN resistant and also included in the ISU-SCN trials, estimated as
� α1þα2þα3ð Þ=β, we find that WTP equals $6.08/acre. Finally, for SCN-resistant varieties that are
included in the ISU-SCN field trials and that score in the top 50% of the two performance indicators
used in this study, estimated as �P

iαi=β, the WTP is $9.62/acre.
It is apparent that these estimated WTPs are rather large. For example, the WTP for top per-

forming SCN-resistant varieties is equivalent to about 18% of the average cost of soybean seed in the
sample, and it is comparable in magnitude with the WTP for the GT trait. SCN resistance per se,
apart from the information associated with ISU-SCN trials, appears to be valued at about 5% of the
average cost of seed.

5.2 | Elasticities

It is of some interest to express our estimates in terms of elasticities. The own-price and cross-price
elasticity for our one-level nested logit model can be computed as follows (for notational simplicity
we drop the market subscript; see Björnerstedt and Verboven (2016) for more general formulas):

ejj �
∂sj
∂pj

pj
sj
¼ βpj

1
1�σ

� σ

1�σ

� � sj
s0
� sj

� �
, j� 1,2,…, Jf g ð10Þ

ejk � ∂sj
∂pk

pk
sj
¼�βpk

σ

1�σ

� � sk
s0
� sk

� �
for j≠ k� 1,2,…, Jf g ð11Þ

e0j � ∂s0
∂pj

pj
s0
¼�βpjsj for j� 1,2,…, Jf g: ð12Þ

We find that the average own-price elasticity is ejj ¼�2:59, which indicates that soybean seed
demand at the variety level is quite elastic. This is not surprising, considering the large number of
substitutes that are present in farmers’ choice sets. For cross-price elasticity within the nest we find,
on average, ejk ¼ 0:015, and for the cross-price elasticity across nests (between the outside option
and a soybean variety) the average is e0j ¼ 0:00005. Consistent with the motivation for the nested
model specification, a farmer moving away from a given soybean variety is much more likely to pur-
chase another soybean variety, rather than using the outside option (corn).

Beyond these variety-level seed demand elasticities, of interest to firms for their pricing decisions,
for other policy-related questions one may be interested in the “aggregate” elasticity of seed demand.
The estimated discrete choice model can provide evidence for that as well. Recalling that the market
share of all soybean seeds is denoted by S1, the question here is the effect of scaling the prices of all
soybean seed varieties, holding the value of the outside option (the price of corn seeds) constant.
Thus, the aggregate elasticity of interest can be stated as:

T A B L E 6 Marginal willingness-to-pay estimates ($/acre)

Seed attribute Value
As percent of
average seed cost

SCN resistance trait 2.69 5.2%

SCN resistance & tested by ISU-SCN 6.08 11.7%

SCN resistance & tested by ISU-SCN & top yield & top SCN control 9.62 18.5%

GT trait 9.69 18.7%

Note: Percent figures in the last column are computed relative to the mean price of all soybean varieties in the sample ($51.95/acre).
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e� ∂S1 kpð Þ
∂k

k
S1

����
k¼1

where p is the vector of all soybean seed prices. Because by definition S1 � 1� s0, then
∂S1=∂k¼�∂s0=∂k, and the aggregate elasticity satisfies

e¼� s0
1� s0ð Þ

XJ

j¼1

e0j: ð13Þ

By utilizing (12), this elasticity can be conveniently rewritten as e¼ βs0p, where p�P
j sj=S1
� �

pj is
the weighted average of all soybean seed prices. We find that the average value of this elasticity, com-
puted over all markets in our study, is e¼�0:29. When viewed from the aggregate input demand
level, therefore, soybean seed demand is rather inelastic. The fact this elasticity is greater than zero in
absolute value, though, suggests that the extent of substitutability between soybean and corn, as cap-
tured by the outside option in our model, is not negligible.14

5.3 | Randomization tests

How much trust can we put on the econometric results concerning the effects of the “treatments” of
interest, SCN resistance and evidence from the ISU-SCN trials? Here we present some “placebo”
tests that provide support for our results. These tests are in the spirit of randomization inference that
has long been helpful to understand causality in statistics (Ho & Imai, 2006). Specifically, we follow
Rotemberg (2019) and devise permutation tests to investigate the plausibility of our regression
results if, in fact, there were no true impacts of the ISU-SCN program (or SCN resistance trait). The
underlying idea of the randomization exercises we implement is to permute the treatment of interest
so that it is randomly assigned, maintaining the same proportion of the treated group as the original
sample (Berry & Fowler, 2021; Rotemberg, 2019).

We carry out two randomization experiments. In the first, varieties’ attributes concerning the
ISU-SCN trials—that is, the indicator variables associated with “tested by ISU,” “yield in top 50%,”
and “SCN control in top 50%”—are randomly assigned. This is done while preserving the relative
proportions of the treatments of interest. For example, this means that the randomly assigned treat-
ment of being tested by ISU-SCN is drawn from within the group of SCN resistant varieties. In this
first randomization experiment, the indicator variable for the attribute “SCN resistance” is kept true
to the data. In the second randomization experiment, all SCN-related indicator variables are ran-
domly assigned, again making sure that the assigned treatments are consistent with the original data
structure.

After each permutation draw, the 2SLS regression is run. In so doing, we can assess the effect of
SCN-related pseudo treatments under the same number of varieties featured by ISU-SCN or SCN
resistance trait. Using Monte Carlo simulations, we repeat this procedure 1000 times and report the
mean and standard deviation of estimated coefficients. The results of these placebo tests are reported
in Table 7. In Randomization 1, the permutation process only affects ISU-SCN terms, whereas the
SCN attribute is true to the data. The results show that the attributes subject to randomization (also
labeled by “R” in Table 7) are now statistically indistinguishable from zero, whereas the attribute
“SCN resistance,” which is true to the data in this experiment, remains positive and statistically sig-
nificant. In Randomization 2, both SCN resistance and ISU-SCN terms are permuted. Here we find

14The inclusion of the outside option (corn) also permits us to measure the impact of SCN resistance and ISU-SCN on the extensive margin—
see section D in the online supplementary appendix.

18 VALUE OF INNOVATION AND EXTENSION INFORMATION



that, again, all of the coefficients associated with placebo treatments are statistically not different
from zero. This lends support to our conclusion that the econometric results reported in Table 3 are
indeed indicating a structural effect of the importance to farmers of the true SCN-related characteris-
tics of soybean seed varieties.

6 | WELFARE

The analysis so far has focused on documenting the statistical significance of SCN-resistance and the
ISU-SCN trial information for seed demand. Having estimated the discrete choice seed demand
model, however, we are in a position to investigate the quantitative importance of these attributes. A
first look at this question was provided by farmers’ WTP estimates in Table 6. These WTP estimates
can be combined with observed market data to provide a first-order approximation to the total sur-
plus created by SCN resistance and ISU-SCN program information. To be specific, multiplication of
WTP for a product characteristic by the corresponding acres planted to varieties that possess it gives
an approximate welfare measure for that characteristic. Over the six years of the study (2011–2016)
in Iowa and northern Illinois, we find that this method implies a total surplus change—from the
combined availability of SCN-resistant varieties and the information associated with the ISU-SCN
program—of about $466 million.

Whereas such a calculation is attractive because it relies simply on observed planted acres of each
variety, in addition to the estimated WTPs, some limitations of this procedure are evident. One obvi-
ous drawback is the (rather dubious) presumption that the extent to which each variety is planted is
independent of the attributes being evaluated. Furthermore, beyond total welfare increase, we also
wish to evaluate the distribution of welfare gains. These limitations can be addressed by exploiting
the structure of the estimated seed demand model.

A property of the nested logit model used in this study is that it permits a closed-form represen-
tation of welfare measures using the so-called log-sum formulae (e.g., Train, 2009). Comparing the
expected value to the farmer of a choice set with a counterfactual situation where some attributes of
the available choices are modified provides a structural approach to measuring welfare change due
to the SCN resistance trait and ISU-SCN program. The two main counterfactual scenarios of interest

T A B L E 7 Distribution of demand estimates under randomization experiments

Original 2SLS
Randomization 1 Randomization 2

Estimate Mean SD Mean SD

Price �0.00953* �0.0097 0.0001 �0.0101 0.0002

SCN resistant (SCN) 0.0256*** 0.0359 0.0037 R 0.0011 0.0065

SCN � Tested � top-y � top-s �0.000400 R 0.0026 0.0205 R �0.0019 0.0213

SCN � Tested � top-y 0.139*** R �0.0164 0.1633 R �0.0087 0.1667

SCN � Tested � top-s �0.00222 R 0.0016 0.0169 R 0.0051 0.0180

SCN � Tested �0.0863*** R �0.0054 0.0115 R �0.0021 0.0116

Tested � top-y �0.102** R 0.0104 0.1636 R 0.0085 0.1663

Tested 0.119*** R 0.0080 0.0092 R 0.0007 0.0103

GT trait 0.0924** 0.1023 0.0013 0.1074 0.0014

Nesting corr. 0.810*** 0.8087 0.0008 0.8106 0.0008

Number of randomizations — 1000 — 1000 —

Note: Randomized variables are denoted by “R.” All models include product age fixed effects, year fixed effects, CRD fixed effects, and brand
fixed effects, as well as the use of three instrumental variables used in the baseline.
*p < 0.1, **p < 0.05, ***p < 0.01.
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are: (a) the case in which both the SCN resistance trait and the ISU-SCN program did not exist, and
(b) the case in which only the ISU-SCN did not exist but SCN varieties were available. Comparing
scenario (a) with the estimated baseline we can impute an overall welfare impact to the joint avail-
ability of varieties that are SCN resistant, and the distinct ISU-SCN extension program that has pro-
duced and diffused a copious amount of SCN-related information. Similarly, comparing scenario
(b) with the observed baseline permits us to impute a value associated with the presence of ISU-SCN
program information.

Relatedly, comparing the two counterfactual scenarios (a) and (b) permits us to identify the
stand-alone value attributable to the availability of SCN-resistance varieties. The temptation is to
assume that this value fully identifies the contribution of seed companies whose research and breed-
ing efforts have made possible the development of such resistant varieties. Conversely, one would
then associate the value from scenario (b) (relative to the baseline) as the welfare contribution attrib-
utable to the ISU-SCN program. As argued by a reviewer, this procedure may possibly overestimate
the contribution of the extension program. After all, from Table 3, it appears that a major source of
value appears associated with the mere fact of a variety being “tested” by the ISU-SCN program,
irrespective of the variety’s performance in the field experiments. Exactly what elements this value
captures may be a matter of debate. Perhaps farmers think of the inclusion of a variety in the tested
set as a signal of other inherent valuable characteristics that are ultimately attributable to breeding
companies. In such a case, absent the ISU-SCN program, it is conceivable that other ways of convey-
ing such information would arise in the marketplace. Hence, attributing the corresponding value
entirely to the ISU-SCN program may overestimate the actual contribution of extension.

To address the foregoing concerns, we analyze an additional counterfactual scenario: (c) the case
where only the information concerning varieties’ performances are not available. Because this sce-
nario focuses narrowly on the quantitative performance in the ISU-SCN variety trials (in terms of
yields and to end-of-season SCN-infestation, metrics conceivably of direct interest to farmers), then
comparison of this scenario with the baseline uncovers a value that arguably should be ascribed
directly to the extension program being evaluated. Whereas this is only a fraction of the value recov-
ered from counterfactual (b), it does provide a credible lower bound for the overall contribution of
the ISU-SCN extension program to welfare.

For the evaluation of seed demand in all counterfactual scenarios hypothesized, the key is to
determine what soybean variety prices would have been observed in the counterfactual scenarios.
The standard approach in the literature would be to use a model of competition to generate equilib-
rium prices, such as the common Bertrand-Nash model (Houde, 2012; Nevo, 2001; Petrin, 2002).
This standard pricing model for differentiated products, however, is not appropriate in our setting
because one of the main seed sellers (Monsanto) holds a monopoly in the GT trait, which it licenses
to its competitor. Whereas the terms of these licenses are not publicly known, the economics of
licensing suggests that such arrangements may seriously affect firms’ pricing choices and may indeed
lead to a high rate of collusion (Shapiro, 1985).

To proceed, we rely on a reduced-form hedonic price approach, as in Hausman and
Leonard (2002) and Ciliberto et al. (2019). The hedonic price function can be interpreted as a
reduced-form approximation to the equilibrium prices in these differentiated-product markets
(Pakes, 2003). For our model, the hedonic price regression is represented by

pjm ¼ θ0 þ
X9

k¼1
θkZ

k
jt m½ � þϕxjþ ζAjt m½ � þ ζb j½ � þ ζt m½ � þ ζl m½ � þ

X3

i¼1
ρiW

i
jmþμjm ð14Þ

where the ζ terms denote fixed effects; Wi
jm denotes the instrumental variables discussed earlier; and,

all other variables are defined as in Equation (9). Here, the parameter vector to be estimated is
ζ,θ,ϕ,ρð Þ, and μjm is an error term.

It is apparent that the hedonic price equation in (14) is the same as the first-stage price equation
of the 2SLS procedure, the estimates of which are reported in Column (1) of Table 4. Relying on the
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hedonic price regression, we predict prices for the baseline situation and for each of the counterfac-
tual scenarios discussed in the foregoing. The predicted prices in the baseline are simply the fitted
values from the estimation of Equation (14) and are denoted bpjm. Counterfactual prices for scenario
(a) are given by:

epjm ¼bθ0þ bϕ �xjþbζAjt m½ � þbζb j½ � þbζt m½ � þbζl m½ � þ
X3

i¼1
bρiWi

jm ð15Þ

where the overstruck hat symbol denotes the estimated parameters from the hedonic equation in
(14). Note that here we drop all information variables about ISU-SCN as well as the term for the
SCN resistance per se.

As for scenario (b), the counterfactual prices are:

epjm ¼bθ0þ bϕxjþbθ1Z1
jt m½ � þbζAjt m½ � þbζb j½ � þbζt m½ � þbζl m½ � þ

X3

i¼1
bρiWi

jm ð16Þ

where we have dropped all information variables about ISU-SCN but retain those concerning SCN
resistance. Finally, for scenario (c) the counterfactual prices are written as:

epjm ¼bθ0þ bϕxjþbθ1Z1
jt m½ � þbθ5Z5

jt m½ � þbθ9Z9
jt m½ � þbζAjt m½ � þbζb j½ � þbζt m½ � þbζl m½ � þ

X3

i¼1
bρiWi

jm ð17Þ

For each scenario, these predicted prices are used along with the estimated demand model of
Equation (9) to obtain the predicted mean expected per-acre profit of product j in market m, given
any pair of j and m for each case—namely, bδjm for the baseline and eδjm for the counterfactual sce-
nario. Given such predicted mean expected profits, we calculate the aggregate value of the nests in
the demand system—the “inclusive values” for the two situations being compared. The inclusive
values in our one-level nesting structure are defined as follows (see Björnerstedt and Verboven (2016)
for a more general setup):

Igm ¼ 1�σð Þ � ln
X
j � J1m

exp
δjm
1�σ

	 

ð18Þ

Im ¼ ln 1þ exp Igm
� �� � ð19Þ

where Igm is the inclusive value of all soybeans (the nest for the inside option) in market m, and Im is
the inclusive value for the entire choice set (including all soybeans and the outside option). By
inserting bδjm and eδjm, respectively, into Equation (18), we can measure two predicted inclusive values
for every market: bIm (the value in the baseline) and eIm (the value in the counterfactual).

Inclusive values are directly related to the expected value of the maximum of the given set of
choices, which has a closed-form representation when the unobserved random terms have the TIEV
distribution (Anderson et al., 1992). Thus, the net change in inclusive value represents farmers’ wel-
fare change between the two scenarios, which can be converted to dollar terms by dividing by the
(negative of the) price coefficient. Namely, the per-acre farmers’ welfare change between the two sce-

narios is: Ωm � eIm�bIm� �
=�β. Farmers’ surplus in market m is therefore computed as Ωm�Mm,

where Mm is the “market size” of market m (i.e., the total number of acres available for planting
either corn or soybeans). Similarly, the total surplus change of farmers is

P
mΩm�Mm.

It is important to note that, in these counterfactual situations, the assumption is that the func-
tionality of seeds is not affected by dropping the SCN-related attributes. In other words, we are
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assuming that another comparable variety would have been developed and commercialized in lieu of
the observed SCN resistant variety, implying that the number of elements in the choice set is the
same across counterfactual scenarios. An alternative to such “keep all” procedure would be to simply
drop SCN-resistant varieties from the choice set. The premise of this alternative procedure, therefore,
would be that no other variety would have been developed instead of the SCN-resistant varieties.
Thus, these two procedures represent two extreme situations that could have arisen absent efforts to
develop SCN-resistant varieties, neither of which is entirely compelling. The main point to appreci-
ate is that, in this discrete choice framework, the diversification effect brought about by an expanded
choice set has value, per se, to the decision maker. This is because an expanded choice set for farmers
increases the likelihood of a choice that better matches their growing conditions. That is, the
expected utility from a logit model increases with the number of elements in the choice set, as noted
by Petrin (2002). Because the “keep all” procedure is the most conservative, in the sense that it pro-
duces the smallest estimated welfare impacts of SCN-resistant varieties, in what follows we present
the results for this procedure only.

The results of the counterfactual welfare analysis are reported in Table 8. We find the total sur-
plus to farmers from the combined availability of SCN-resistant varieties and the ISU-SCN program
information is $324.77 million (over all markets considered; that is, for Iowa and northern Illinois
for the six-year period 2011–2016).15 Farmers’ surplus directly connected with the ISU-SCN pro-
gram is estimated at $205.46 million. More nuanced interpretations of these estimated surplus gains
can be obtained by asking what the return to farmers is, as predicted by the model, from the avail-
ability of performance indicators for all the ISU-SCN tested varieties. This estimate turns out to
amount to $86.45 million, again over all markets considered. As discussed earlier, the value to
farmers attributable to the existence of the ISU-SCN extension program, therefore, likely lies
between the upper bound of $205.46 million and the lower bound of $86.45 million. Conceptually,
the difference between the overall surplus to farmers due to the joint availability of SCN-resistant
varieties and extension information, and the value specifically attributed to the ISU-SCN program,
provides an estimate of the contribution of the development of SCN-resistant varieties to farmers’
surplus. Based on the foregoing, therefore, the value of R&D and breeders’ contributions to farmers’
surplus is estimated to lie between $324:77�$205:46¼ $119:31 million and $324:77�$86:45¼
$238:32 million.

The predicted per-acre mean expected profits under the baseline and a counterfactual,

namely bδjm and eδjm, can also be used to estimate seed suppliers’ revenue changes. Specifically, these
terms, along with the structural nested logit share equations, permit estimation of the sharesbsjm (in the baseline) and esjm (in the counterfactual scenario), for every product j and market m.
Brand b’s revenue change in the counterfactual being evaluated can thus be written as

ΔRbm �Mm
P

j � besjmepjm�P
j � bbsjmbpjmh i

. Total revenue change of the entire soybean seed industry,

T A B L E 8 Welfare estimates, Iowa and northern Illinois, 2011–2016 ($ million)

SCN
resistance
& ISU-SCN

ISU-SCN
extension

ISU-SCN
performance
scores only

Farmers’ welfare gains 324.77 205.46 86.45

Seed suppliers’ revenue change 153.71 85.96 18.53

Total ex post welfare change 478.48 291.42 104.98

Note: Entries in columns are computed from the counterfactual procedures (a), (b), and (c) described in the text. All estimates are in 2011 dollars.

15Because prices were deflated by a price index prior to estimating the seed demand model, as noted earlier, all monetary values in this
section are expressed in 2011 dollars.
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over all markets, is thus
P

m

P
bΔRbm, which, as reported in Table 8, is estimated to amount to

$153.71 million (combined availability of SCN-resistant varieties and ISU-SCN program informa-
tion). These increases in seeds suppliers’ revenue reflect both the enhanced demand for
SCN-resistant varieties, and the price premia that such varieties command in the baseline (relative to
counterfactual scenarios).

Summing the farmers’ welfare gains and the seed suppliers enhanced revenues in Table 8 yields
an estimate of the (ex post) total returns to innovation. Overall, over the region and period of study,
this welfare gain is $478.48 million.16 It should be emphasized that the foregoing estimated surpluses
attributable to the innovation of SCN-resistant varieties, and the associated ISU-SCN extension pro-
gram, have a different interpretation for farmers and seed sellers. The surplus captured by farmers is
a true welfare gain due to innovation and extension information; that is, it represents additional
expected profit, net of any imputed extra cost, which would have been realized otherwise. The fact
that seed sellers’ revenue is increased by their ability to offer SCN-resistant varieties, however, is an
ex post return, best interpreted as the payoff of (costly) the R&D program necessary to develop and
commercialize these varieties.

7 | CONCLUSION

In this paper we provide direct evidence on the value of innovation and associated extension infor-
mation. In particular, we have studied the impact of SCN-resistant soybean varieties and the infor-
mation produced by the ISU-SCN program. This study focuses on the time and region in which the
dissemination of the relevant extension information has been greatest: Iowa and northern Illinois
from 2011 to 2016. The empirical analysis is rooted in a discrete choice model of farmers’ seed
demand. Specifically, we estimate a one-level nested logit model. Because of the nature of the ques-
tion addressed, the seed demand model was specified and estimated at the individual variety level.
To the best of our knowledge, this is the first seed demand model formulated and estimated at this
extremely refined level.

We find significant seed demand effects associated with variables coding for varieties’ attributes
associated with SCN resistance and SCN-related extension information. The estimated model also
provides the vehicle to assess the welfare consequences of an innovation and a high-profile associ-
ated extension education program that has targeted the soybean cyst nematode, the most harmful
soybean pathogen in North America. Specifically, we estimate the WTP of farmers for SCN-resistant
varieties, and the separate extension program devoted to educating farmers about SCN, as well as
developing and disseminating information pertaining to the performance of SCN-resistant varieties.
Farmers’ ceteris paribus WTP for SCN resistance varieties is estimated at $2.69/acre. The WTP for a
variety that is SCN resistant, that is included ISU-SCN variety trials, and that is a top performer
(according to the two metrics used in the model) is $9.62/acre, comparable in magnitude to farmers’
WTP for the GT trait (about 18% of the average seed cost).

A fuller characterization of the welfare implications of the SCN-resistance innovation, and the
related extension program that we have studied, is provided by counterfactual analyses that rely on
the structure of the estimated demand model. Two main counterfactual scenarios are considered: the
absence of both the SCN resistance trait and ISU-SCN, and the absence of the ISU-SCN program
only. In addition, we also consider a scenario where only the performance metrics produced by the
ISU-SCN program are absent. A conservative procedure to implement these counterfactuals suggests
large farmers’ gains from the joint availability of SCN-resistance varieties and the ISU-SCN pro-
gram: a total of $324.77 million (over all markets spanning Iowa and northern Illinois from 2011 to
2016). Depending on the interpretation one puts on the counterfactuals evaluated, the portion of this
surplus gain specifically attributable to the ISU-SCN extension program ranges between $86.45

16The regional distribution of welfare change is illustrated in Figure X4 in the online supplementary appendix.
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million and $205.46 million. The remainder of the total farmers’ surplus, ranging from $119.31 mil-
lion and $238.32 million, represents the contribution attributable to the R&D and breeding activities
responsible for the actual development of SCN-resistant varieties.

These counterfactual scenarios also provide additional insights into the distribution of these wel-
fare gains. In particular, the seed industry has benefited from both the introduction of SCN-resistant
varieties and also from the ISU-SCN program by an increase in soybean seed revenues (over the
region and time frame of the study) estimated at $153.71 million. Thus, the seed industry appears to
have appropriated about one-third of the estimated total ex post surplus change. In any case, we
should note that the returns to breeders and farmers have a different interpretation in this context.
For seed companies, the estimates pertain to ex post returns to the past R&D investments that made
possible the novel SCN-resistant varieties, whereas for farmers the estimated surplus gain is a true
welfare gain.

The results of this study carry some general implications. The extension program we have stud-
ied is, quite clearly, a “success story,” and one should be mindful of that when extrapolating lessons
to the broader set of agricultural extension (or research) activities, some of which may end up as dry
holes. Yet, what appears to have made this program a success are three main factors: (a) it addressed
a quantitatively important issue, a pathogen that can cause major yield losses to US farmers; (b) it
involved a sustained extension effort spanning more than two decades; and, (c) it focused on the
provision of a quintessential public good—the production and dissemination of information about
the effectiveness of SCN-resistant varieties. These elements appear to be almost textbook checkboxes
on how to prioritize extension activities and arguably may have broader application.

The fact that the welfare gains uncovered in this study ultimately rely on efforts exerted both by
seed companies, who developed the SCN-resistant varieties, and by the ISU-SCN program, who pro-
vided third-party testing of their effectiveness, and dissemination of the associated information, is
also noteworthy. This points to a strong complementarity between research and extension activities,
a traditional justification for a good portion of land grant university work on agriculture. In an age
where the private sector is undertaking an increasingly larger share of agricultural research, our
results underscore the benefits of enabling institutional arrangements conducive to exploiting such
synergy.

ACKNOWLEDGMENTS
The authors are grateful to Dr. Greg Tylka, Iowa State University, for generously sharing his depth
of expertise concerning SCN-resistant soybeans. The authors also thank editor Terrance Hurley and
the journal’s reviewers for their helpful comments. This project was supported in part by a USDA
NIFA grant, contract number 2018-67023-27682.

REFERENCES
Allen, Tom W., Carl A. Bradley, Adam J. Sisson, Emmanuel Byamukama, Martin I. Chilvers, Cliff M. Coker, Alyssa A.

Collins, et al. 2017. “Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2010
to 2014.” Plant Health Progress 18: 19–27.

An, Yonghong, and Wei Zhao. 2019. “Dynamic Efficiencies of the 1997 Boeing-McDonnell Douglas Merger.” Rand Journal of
Economics 50(3): 666–94.

Anderson, Jock R., and Gershon Feder. 2007. “Agricultural Extension.” Handbook of Agricultural Economics 3: 2343–78.
Anderson, Simon P., Andre De Palma, and Jacques-Francois Thisse. 1992. Discrete Choice Theory of Product Differentiation.

Cambridge: MIT Press.
Bandara, Ananda Y., Dilooshi K. Weerasooriya, Carl A. Bradley, Tom W. Allen, and Paul D. Esker. 2020. “Dissecting the Eco-

nomic Impact of Soybean Diseases in the United States over Two Decades.” PLoS One 15(4): e0231141.
Berry, Cristopher R., and Anthony Fowler. 2021. “Leadership or Luck? Randomization Inference for Leader Effects in Politics,

Business, and Sports.” Science Advances 7(4): eabe3404.
Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Market Equilibrium.” Econometrica: Journal of

the Econometric Society 36(4): 841–90.
Berry, Steven T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.” Rand Journal of Economics 25(2):

242–62.

24 VALUE OF INNOVATION AND EXTENSION INFORMATION



Bissonnette, Kaitlyn M., and Gregory L. Tylka. 2017. Seed Treatments for Soybean Cyst Nematode. Ames, IA: Iowa State Uni-
versity Extension and Outreach, CROP 3142 Flyer, August.

Björnerstedt, J., and F. Verboven. 2016. “Does Merger Simulation Work? Evidence from the Swedish Analgesics Market.”
American Economic Journal: Applied Economics 8: 125–64.

Bresnahan, Timothy F. 1987. “Competition and Collusion in the American Automobile Industry: The 1955 Price War.” Jour-
nal of Industrial Economics 35(4): 457–82.

Cardell, N. Scott. 1997. “Variance Components Structures for the Extreme-Value and Logistic Distributions with Application
to Models of Heterogeneity.” Econometric Theory 13: 185–213.

Ciliberto, Federico, GianCarlo Moschini, and Edward Perry. 2019. “Valuing Product Innovation: Genetically Engineered Vari-
eties in US Corn and Soybeans.” Rand Journal of Economics 50(3): 615–44.

Debreu, Gerard. 1960. “Review of RD Luce, Individual Choice Behavior: A Theoretical Analysis.” American Economic Review 50(1):
186–8.

Dinar, Ariel, Giannis Karagiannis, and Vangelis Tzouvelekas. 2007. “Evaluating the Impact of Agricultural Extension on
Farms’ Performance in Crete: A Nonneutral Stochastic Frontier Approach.” Agricultural Economics 36: 135–46.

Evanson, Robert. 1997. “The Economic Contributions of Agricultural Extension to Agricultural and Rural Development.” In
Improving Agricultural Extension, edited by B. Swanson, R. Bentz, and A. Sofranko, 27–36. Rome: FAO.

Fernandez-Cornejo, Jorge, Seth Wechsler, Mike Livingston, and Lorraine Mitchell. 2014. Genetically Engineered Crops in the
United States.” Economic Research Report No. 162. Washington, DC: U.S. Department of Agriculture Econoimc
Research Service.

Genius, Margarita, Phoebe Koundouri, Celine Nauges, and Vangelis Tzouvelekas. 2013. “Information Transmission in Irriga-
tion Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects.” American Journal of
Agricultural Economics 96: 328–44.

Hausman, Jerry A., and Gregory K. Leonard. 2002. “The Competitive Effects of a New Product Introduction: A Case Study.”
Journal of Industrial Economics 50(3): 237–63.

Hendricks, Nathan P., Aaron Smith, and Daniel A. Sumner. 2014. “Crop Supply Dynamics and the Illusion of Partial Adjust-
ment.” American Journal of Agricultural Economics 96(5): 1469–91.

Ho, Daniel E., and Kosuke Imai. 2006. “Randomization Inference with Natural Experiments: An Analysis of Ballot Effects in
the 2003 California Recall Election.” Journal of the American Statistical Association 101(475): 888–900.

Houde, Jean-François. 2012. “Spatial Differentiation and Vertical Mergers in Retail Markets for Gasoline.” American Economic
Review 102(5): 2147–82.

Jin, Yu, and Wallace E. Huffman. 2016. “Measuring Public Agricultural Research and Extension and Estimating their Impacts
on Agricultural Productivity: New Insights from US Evidence.” Agricultural Economics 47: 15–31.

Kim, Hyunseok, and GianCarlo Moschini. 2018. “The Dynamics of Supply: US Corn and Soybeans in the Biofuel Era.” Land
Economics 94(4): 593–613.

Koenning, Stephen R., and J. Allen Wrather. 2010. “Suppression of Soybean Yield Potential in the Continental United States
by Plant Diseases from 2006 to 2009.” Plant Health Progress 11(1): 5.

Kovo, Assaf, and Alon Eizenberg. 2017. Inferring Market Definitions and Competition Groups from Empirically-Estimated
Demand Systems: A Practitioner’s Guide. Jerusalem, Israel: Department of Economics Working Paper, Hebrew University
of Jerusalem.

Ma, Xingliang, and Guanming Shi. 2015. “A Dynamic Adoption Model with Bayesian Learning: An Application to US Soy-
bean Farmers.” Agricultural Economics 46: 25–38.

Maffioli, Alessandro, Diego Ubfal, Gonzalo V. Baré, and Pedro Cerd�an-Infantes. 2011. “Extension Services, Product Quality
and Yields: The Case of Grapes in Argentina.” Agricultural Economics 42: 727–34.

Magnier, Alexandre, Nicholas G. Kalaitzandonakes, and Douglas J. Miller. 2010. “Product Life Cycles and Innovation in the
US Seed Corn Industry.” International Food and Agribusiness Management Review 13(1030-2016-82866): 17.

Mourtzinis, Spyridon, and Shawn P. Conley. 2017. “Delineating Soybean Maturity Groups across the United States.” Agron-
omy Journal 109(4): 1397–403.

Nevo, Aviv. 2001. “Measuring Market Power in the Ready-to-Eat Cereal Industry.” Econometrica 69: 307–42.
Niblack, T.L. 2005. “Soybean Cyst Nematode Management Reconsidered.” Plant Disease 89(10): 1020–6.
Pakes, Ariel. 2003. “A Reconsideration of Hedonic Price Indexes with an Application to PC’s.” American Economic

Review 93(5): 1578–96.
Petrin, Amil. 2002. “Quantifying the Benefits of New Products: The Case of the Minivan.” Journal of Political Economy

110(4): 705–29.
Richards, Timothy J., and Celine Bonnet. 2018. “New Empirical Models in Consumer Demand.” In The Routledge Handbook

of Agricultural Economics, edited by Gail L. Cramer, Krishna P. Paudel, and Andrew Schmitz, 488–511. New York:
Routledge.

Rotemberg, Martin. 2019. “Equilibrium Effects of Firm Subsidies.” American Economic Review 109(10): 3475–513.
Sanderson, Eleanor, and Frank Windmeijer. 2016. “A Weak Instrument F-Test in Linear IV Models with Multiple Endoge-

nous Variables.” Journal of Econometrics 190(2): 212–21.
Shapiro, Carl. 1985. “Patent Licensing and R&D Rivalry.” American Economic Review Papers and Proceedings 75(2): 25–30.

LEE AND MOSCHINI 25



Staton, Mike. 2013. Sources of Information for Selecting Soybean Cyst Nematode-Resistant Varieties. East Lansing, MI: Michi-
gan State University Extension. December 18, 2013. Retrieved from. https://www.canr.msu.edu/news/sources_of_
information_for_selecting_soybean_cyst_nematode_resistant_variet

Stock, James H., and Motohiro Yogo. 2005. “Testing for Weak Instruments in Linear IV Regression.” In Identification and
Inference for Econometric Models: Essays in Honor of Thomas Rothenberg, edited by Donald W.K. Andrews and James
H. Stock, 80–108, Cambridge University Press.

Train, Kenneth E. 2009. Discrete Choice Methods with Simulation. Cambridge: Cambridge University Press.
Tylka, Gregory L. 2012. Soybean Cyst Nematode Field Guide. Extension Publication CSI 12. Ames, IA: Iowa State University.

Retrieved from. https://lib.dr.iastate.edu/extension_pubs/223
Tylka, Gregory L., and Cristopher C. Marett. 2021. “Known Distribution of the Soybean Cyst Nematode, Heterodera Glycines,

in the United States and Canada in 2020.” Plant Health Progress 22(1): 72–4.
Useche, Pilar, Barham L. Barham, and Jeremy D. Foltz. 2009. “Integrating Technology Traits and Producer Heterogeneity: A

Mixed-Multinomial Model of Genetically Modified Corn Adoption.” American Journal of Agricultural Economics 91:
444–61.

Useche, Pilar, Barham L. Barham, and Jeremy D. Foltz. 2012. “Trait-Based Adoption Models Using ex-Ante and ex-Post
Approaches.” American Journal of Agricultural Economics 95: 332–8.

Wrather, J.A., T.R. Anderson, D.M. Arsyad, Y. Tan, L.D. Ploper, A. Porta-Puglia, H.H. Ram, and J.T. Yorinori. 2001. “Soybean
Disease Loss Estimates for the Top Ten Soybean-Producing Countries in 1998.” Canadian Journal of Plant Pathology
23(2): 115–2.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the pub-
lisher’s website.

How to cite this article: Lee, Seungki, and GianCarlo Moschini. 2022. “On the value of
innovation and extension information: SCN-resistant soybean varieties.” American Journal of
Agricultural Economics 1–26. https://doi.org/10.1111/ajae.12283

26 VALUE OF INNOVATION AND EXTENSION INFORMATION

https://www.canr.msu.edu/news/sources_of_information_for_selecting_soybean_cyst_nematode_resistant_variet
https://www.canr.msu.edu/news/sources_of_information_for_selecting_soybean_cyst_nematode_resistant_variet
https://lib.dr.iastate.edu/extension_pubs/223
https://doi.org/10.1111/ajae.12283

	On the value of innovation and extension information: SCN-resistant soybean varieties
	1  INTRODUCTION
	2  BACKGROUND AND DATA
	2.1  SCN and extension information
	2.2  Seed purchase data
	2.3  Descriptive statistics

	3  MODELING FRAMEWORK
	3.1  Market definition
	3.2  Brands
	3.3  Products and seed traits
	3.4  Product life cycle

	4  SEED DEMAND MODEL
	4.1  Nested logit
	4.2  Identification

	5  ESTIMATION RESULTS
	5.1  Hypothesis tests and willingness-to-pay estimates
	5.2  Elasticities
	5.3  Randomization tests

	6  WELFARE
	7  CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


